Modeling of Fatigue Crack Propagation in Aluminum Alloys Using an Energy Based Approach

Authors

  • F. Khelil Laboratoire de Mécanique de Lille (LML), University of Lille1, France
  • B. Aour Laboratoire de Recherche en Technologie de l’environnement, Ecole Normale Supérieure d'Enseignement Technique d'Oran (ENSET d'Oran), Algeria
  • M. Belhouari Department of Mechanical Engineering, University of Sidi Bel Abbes, Algeria
  • N. Benseddiq Laboratoire de Mécanique de Lille (LML), University of Lille1, France
Volume: 3 | Issue: 4 | Pages: 488-496 | August 2013 | https://doi.org/10.48084/etasr.329

Abstract

Materials fatigue is a particularly serious and unsafe kind of material destruction. Investigations of the fatigue crack growth rate and fatigue life constitute very important and complex problems in mechanics. The understanding of the cracking mechanisms, taking into account various factors such as the load pattern, the strain rate, the stress ratio, etc., is of a first need. In this work an energy approach of the Fatigue Crack Growth (FCG) was proposed. This approach is based on the numerical determination of the plastic zone by introducing a novel form of plastic radius. The experimental results conducted on two aluminum alloys of types 2024-T351 and 7075-T7351 were exploited to validate the developed numerical model. A good agreement has been found between the two types of results.

Keywords:

fatigue crack growth, energetic approach, plastic zone, aluminum alloys

Downloads

Download data is not yet available.

References

J. R. Rice, “The mechanics of crack tip deformation and extension by fatigue”, Fatigue Crack Propagation Special Technical Publication 415, ASTM, pp. 247-311, Philadelphia, 1967

I. Shozo, I. Yoshito, M. E. Fine, “Plastic work during fatigue crack propagation in a high strength low alloy steel and in 7050 AL-Alloy”, Engineering Fracture Mechanics, Vol. 9, No. 1, pp. 123-136, 1977 DOI: https://doi.org/10.1016/0013-7944(77)90057-1

P. K. Liaw, S. I. Kwun, M. E. Fine, “Plastic work of fatigue crack propagation in steels and aluminum alloys”, Metallurgical Transactions A, Vol. 12, No. 1, pp. 49-55, 1981 DOI: https://doi.org/10.1007/BF02648507

C. Saix, P. Jouanna, “Analyse de la dissipation plastique dans des pièces métalliques minces”, Journal de Mécanique Appliquée, Vol. 5, No. 1, pp. 65-93, 1981

S. R. Bodner, D. L. Davidson, J. Lankford “A description of fatigue crack growth in terms of plastic work”, Engineering Fracture Mechanics, Vol. 17. No. 2, pp. 189-191, 1983 DOI: https://doi.org/10.1016/0013-7944(83)90169-8

A. D. Joseph, T. S. Gross, “Comparison of techniques for the measurement of plastic work of fatigue crack growth in low carbon steel”, Engineering Fracture Mechanics, Vol. 21, No. 1, pp. 63-74, 1985 DOI: https://doi.org/10.1016/0013-7944(85)90054-2

N. W. Klingbeil, “A total dissipated energy theory of fatigue crack growth in ductile solids”, International Journal of Fatigue, Vol. 25, No. 2, pp. 117-128, 2003 DOI: https://doi.org/10.1016/S0142-1123(02)00073-7

N. Ranganathan, F. Chalon, S. Meo, “Some aspects of the energy based approach to fatigue crack propagation”, International Journal of Fatigue, Vol. 30, No. 10-11, pp. 1921-1929, 2008 DOI: https://doi.org/10.1016/j.ijfatigue.2008.01.010

R. Jones, M. Krishnapillai, K. Cairns, N. Matthews, “Application of infrared thermography to study crack growth and fatigue life extension procedures”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 33, No. 12, pp. 871-884, 2010 DOI: https://doi.org/10.1111/j.1460-2695.2010.01505.x

J. S. Daily, N. W. Klingbeil, “Plastic dissipation energy at a bimaterial crack tip under cyclic loading”, International Journal of Fatigue, Vol. 32, No. 10, pp. 1710-1723, 2010 DOI: https://doi.org/10.1016/j.ijfatigue.2010.03.010

J. Weertman, “Theory of fatigue crack growth based on a BCS crack theory with work hardening”, International Journal of Fracture.; Vol. 9, No. 2. 125-131, 1973 DOI: https://doi.org/10.1007/BF00041854

M .Mazari, “Contribution à l’étude d’une approche énergétique de la propagation des fissures de fatigue”, Thèse de doctorat, Université de Sidi Bel Abbès, Algérie, 2003

J. Morrow, “Cyclic Plastic Strain Energy and Fatigue of Metals” in Internal friction, damping, and cyclic plasticity, ASTM STP 378, American Society for Testing and Material, 1965

J. S. Daily, N. W. Klingbeil. “Plastic dissipation in fatigue crack growth under mixed mode loading”, International Journal of Fatigue, Vol. 26, No. 7, pp.727-738, 2004 DOI: https://doi.org/10.1016/j.ijfatigue.2003.11.004

M. Mazari, B. Bouchouicha, M. Zemri, M. Benguediab, N. Ranganathan, “Fatigue crack propagation analyses based on plastic energy approach”, Computational Materials Science, Vol. 41, No. 3, pp. 344-349, 2008 DOI: https://doi.org/10.1016/j.commatsci.2007.04.016

N. Ranganathan, “Contribution au développement d’une approche énergétique à la propagation d’une fissure de fatigue”, Thèse de doctorat, Université de Poitiers. France, 1985

W. Wang, H. Hsu, “Fatigue crack growth rate of metal by plastic energy damage accumulation theory”, Journal of Engineering Mechanics, Vol. 120, No. 4, pp. 776-795, 1994 DOI: https://doi.org/10.1061/(ASCE)0733-9399(1994)120:4(776)

S. M. Beden, S. Abdullah, A. K. Ariffin. “Review of Fatigue Crack Propagation Models for Metallic Components”. European Journal of Scientific Research, Vol. 28. No. 3, pp. 364-397, 2009

R. O. Ritchie, “Mechanisms of fatigue-crack propagation in ductile and brittle solids”. International Journal of Fracture., Vol. 100, No. 1, pp. 55-83, 1999

N. Ranganathan, K. Jendoubi, M. Benguediab, J. Petit, “ Effect of R ratio and ΔK level on the hysteretic energy dissipated during fatigue crack propagation”, Scripta Metallurgica, Vol. 21, No. 8, pp. 1045-1049, 1987 DOI: https://doi.org/10.1016/0036-9748(87)90247-X

D. M. Tracey, “Finite element solution for crack-tip behavior in small-scale yielding”, Journal of Engineering Materials and Technology, Vol. 98, No. 2, pp. 146-151, 1976 DOI: https://doi.org/10.1115/1.3443357

G. Chalant, L. Remy, “Plastic strain distribution at the tip of a fatigue crack. Application to fatigue crack closure in the threshold regime”, Engineering Fracture Mechanics, Vol. 16, No. 5, pp. 707-720, 1982 DOI: https://doi.org/10.1016/0013-7944(82)90024-8

G. Chalant, “Fissuration par fatigue d’alliages cobalt-Nickel : Discussion d’un modèle mécanique de propagation”. Thèse de doctorat de l’Ecole des Mines de Paris, 1981

J. L. Engerand, Mécanique de la rupture, Ed. Techniques Ingénieur, 1990

P. Ludwik, Elemente der Technologischen Mechanik, Springer-Verlag OHG, Berlin, 1909 DOI: https://doi.org/10.1007/978-3-662-40293-1

J. C. Newman, “Stress analysis of the compact specimen including the effects of pin loading fracture analysis”, ASTM STP 560, pp. 105-121, 1974 DOI: https://doi.org/10.1520/STP33136S

J. E. Srawley, B. Gross, “Stress intensity factors for bend and compact specimens”, Engineering Fracture Mechanics, Vol. 4, No. 3, pp. 587-589, 1972 DOI: https://doi.org/10.1016/0013-7944(72)90069-0

P. C. Paris, F. A. Erdogan, “A critical analysis of crack propagation laws”, Journal of Basic Engineering, Vol. 85, No. 4, pp. 528-533, 1963 DOI: https://doi.org/10.1115/1.3656900

D. Altenpohl, Aluminium: Technology, application and environment. A profile of a modern metal: Aluminum from Within, 6th Edition, Wiley, 2010

P. S. Pao, S. J. Gill , C. R. Feng, “On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy”, Scripta Materialia, Vol. 43, No. 5, pp. 391-396, 2000 DOI: https://doi.org/10.1016/S1359-6462(00)00434-6

J. W. Kysar, “Energy dissipation mechanisms in ductile fracture”, Journal of the Mechanics and Physics of Solids, Vol. 51, No. 5, pp. 795-824, 2003 DOI: https://doi.org/10.1016/S0022-5096(02)00141-2

Downloads

How to Cite

[1]
Khelil, F., Aour, B., Belhouari, M. and Benseddiq, N. 2013. Modeling of Fatigue Crack Propagation in Aluminum Alloys Using an Energy Based Approach. Engineering, Technology & Applied Science Research. 3, 4 (Aug. 2013), 488–496. DOI:https://doi.org/10.48084/etasr.329.

Metrics

Abstract Views: 914
PDF Downloads: 695

Metrics Information

Most read articles by the same author(s)