Numerical Investigation of the Physical Properties Effect on the Thermal Performance of a Vertical Geothermal Heat Exchanger

Authors

  • M. Benyoub Laboratory of Applied Biomechanics and Biomaterials, Department of Mechanical Engineering, ENP Oran, Algeria
  • B. Aour Laboratory of Applied Biomechanics and Biomaterials, Department of Mechanical Engineering, ENP Oran, Algeria
  • B. Bouhacina Energetic and Applied Thermal Laboratory (ETAP) Faculty of Technology, University of Tlemcen, Algeria
  • K. Sadek Laboratory of Applied Biomechanics and Biomaterials, Department of Mechanical Engineering, ENP Oran, Algeria
Volume: 8 | Issue: 2 | Pages: 2715-2723 | April 2018 | https://doi.org/10.48084/etasr.1827

Abstract

Low-temperature geothermal energy is a promising technique for heating and cooling residential and commercial premises, especially since it is one of the green energy solutions that respect the environment. The principle of this technique is based on thermal exchange between the heat pump and the basement using a vertically buried heat exchanger. This is usually made of a U-shaped tube inserted vertically in a borehole made in the ground and filled with a filler material. The purpose of the present study is to vary the different construction materials of the U-tube, the filling material and the soil, in order to obtain the most energy-efficient parameters. The evolution of temperature and heat flux as a function of time has been highlighted for different combinations. Knowing that an experimental study requires a considerable monetary fund, the present model has been validated using previously literature results. Recommendations on the choice of different materials of the geothermal heat exchanger are proclaimed at the end of this work.

Keywords:

geothermal energy, heat exchanger, finite volumes, temperature, heat flux

Downloads

Download data is not yet available.

References

B. Sanner, C. Karytsas, D. Mendrinos, L. Rybach, “Current status of ground source heat pumps and underground thermal energy storage in Europe”, Geothermics, Vol. 32, Vol. 4-6, pp. 579-588, 2003 DOI: https://doi.org/10.1016/S0375-6505(03)00060-9

J. W. Lund, D. H. Freeston, T. L. Boyd, “Direct utilization of geothermal energy 2010 worldwide review”, Geothermics, Vol. 40, No. 3, pp. 159-180, 2011 DOI: https://doi.org/10.1016/j.geothermics.2011.07.004

T. Bandos, A. E. Montero Reguera, P. J. Fernandez de Cordoba Castella, J. F. Urchueguía Schölzel, “Urchueguia, Improving parameter estimates obtained from thermal response tests: effect of ambient air temperature variations”, Geothermics, Vol. 40, No. 2, pp. 136-143, 2011 DOI: https://doi.org/10.1016/j.geothermics.2011.02.003

A. D. Chiasson, Advances in modeling of ground-source heat pump systems, MSc Thesis, Oklahoma State University, 1999

A. M. Omer, “Ground-source heat pumps systems and applications”, Renewable & Sustainable Energy Reviews, Vol. 12, No. 2, pp. 344-371, 2008 DOI: https://doi.org/10.1016/j.rser.2006.10.003

C. Yavuzturk, J. D. Spitler, S. J. Rees, “A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers”, ASHRAE Transactions, Vol. 105, No. 2, pp. 465-474, 1999

L. R. Ingersoll, “Theory of Earth Heat Exchangers for the Heat Pump, Heat Conduction”, American Society of Heating and Ventilating Engineers, Journal section, Heating, Piping, and Air Conditioning, 1950

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 1959

P. Eskilson, Thermal analysis of heat extraction boreholes, PhD Thesis, University of Lund, 1987

S. P. Rottmayer, W. A. Bechman, J. W. Mitchell “Simulation of a single vertical U-tube ground heat exchanger in an infinite medium”, ASHRAE Transactions, Vol. 103, pp. 651–659, 1997

N. K. Muraya, D. L. O’Neal, W. M. Heffington, “Thermal interference of adjacent legs in vertical U-tube heat exchanger for a ground-coupled heat pump”, ASHRAE Transactions,Vol. 102, No. 2, pp. 12-21, 1996

J. A. Shonder, J. V. Beck, “Determining effective soil formation thermal properties from field data using parameter estimation technique”, ASHRAE Transactions, Vol. 105, pp. 458-466, 1999

C. K. Lee, H. N. Lam, “Computer simulation of borehole ground heat exchanger for geothermal heat pump systems”, Renewable Energy, Vol. 33, No. 6, pp. 1286-1296, 2008

D. Marcotte, P. Pasquier, “On the estimation of thermal resistance in borehole thermal conductivity test”, Renewable Energy, Vol. 33, No. 11, pp. 2407-2415, 2008 DOI: https://doi.org/10.1016/j.renene.2008.01.021

Z. J. Li, M. Y. Zheng, “Development of a numerical model for the simulation of vertical U-tube ground heat exchangers”, Applied Thermal Engineering, Vol. 29, No. 5-6, pp. 920-924, 2009 DOI: https://doi.org/10.1016/j.applthermaleng.2008.04.024

C. Yavuzturk, J. D. Spitler, “A short time step response factor model for vertical ground loop heat exchangers”, ASHRAE Transactions, Vol. 105, No. 2, pp. 475-485, 1999

J. Claesson, S. Javed, “An analytical method to calculate borehole fluid temperatures for time-scales from minutes to decades”, ASHRAE Transactions,Vol. 117, No. 2, pp. 279-288, 2011

L. Lamarche, S. Kajl, B. Beauchamp, “A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems”, Geothermics, Vol. 39, No. 2, pp. 187-200, 2010 DOI: https://doi.org/10.1016/j.geothermics.2010.03.003

D. Marcotte, P. Pasquier, F. Sherif, M. Bernier, “The importance of axial effects for borehole design of geothermal heat-pump systems”, Renewable Energy, Vol. 35, No. 4, pp. 763-770, 2010 DOI: https://doi.org/10.1016/j.renene.2009.09.015

B. Bouhacina, R. Saim, H. Benzenine, H. F. Oztop, “Analysis of thermal and dynamic comportment of a geothermal vertical U-tube heat exchanger”, Energy and Buildings, Vol. 58, pp. 37-43, 2013 DOI: https://doi.org/10.1016/j.enbuild.2012.11.037

L. Pu, D. Qi, K. Li, H. Tan, Y. Li, “Simulation study on the thermal performance of vertical U-tube heat exchangers for ground source heat pump system”, Applied Thermal Engineering, Vol. 79, pp. 202-213, 2015 DOI: https://doi.org/10.1016/j.applthermaleng.2014.12.068

C. Zhang, P. Chen, Y. Liu, S. Sun, D. Peng, “An improved evaluation method for thermal performance of borehole heat exchanger”, Renewable Energy, Vol. 77, pp. 142-151, 2015 DOI: https://doi.org/10.1016/j.renene.2014.12.015

W. Fujun (Ed.), The Dynamics Analysis of the Computational Fluid, Tsinghua University Press, 2004

S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, 1980

P. Eskilson, J. Claesson, “Simulation model for thermally interacting heat extraction boreholes”, Numerical Heat Transfer, Vol. 13, No. 2, pp. 149-165, 1988 DOI: https://doi.org/10.1080/10407788808913609

C. K. Lee, H. N. Lam, “Computer simulation of borehole ground heat exchangers for geothermal heat pump systems”, Renewable Energy, Vol. 33, pp. 1289-1296, 2008 DOI: https://doi.org/10.1016/j.renene.2007.07.006

H. Y. Zeng, N. R. Diao, Z. H. Fang, “A finite line-source model for boreholes in geothermal heat exchangers”, Heat Transfer - Asian Research, Vol. 31, No. 7, pp. 558-567, 2002 DOI: https://doi.org/10.1002/htj.10057

E. J. Kim, J. J. Roux, G. Rusaouen, F. Kuznik, “Numerical modeling of geothermal vertical heat exchangers for the short time analysis using the state model size reduction technique”, Applied Thermal Engineering, Vol. 30, No. 6-7, pp. 706-714, 2010 DOI: https://doi.org/10.1016/j.applthermaleng.2009.11.019

W. Yang, M. Shi, G. Liu, Z. Chen, “A two-region simulation model of vertical U-tube ground heat exchanger and its experimental verification”, Applied Energy, Vol. 86, No. 10, pp. 2005-2012, 2009 DOI: https://doi.org/10.1016/j.apenergy.2008.11.008

D. Fadla, Manuel de maillage sous Gambit et de simulation sous Fluent applications, Laboratoire d’énergétique et de mécanique de fluides interne ENSAM, CER de Paris, 2007

Jalaluddin, A. Miyara . “Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode”, Applied Thermal Engineering, Vol. 33-34, pp. 167-174, 2012 DOI: https://doi.org/10.1016/j.applthermaleng.2011.09.030

R. Al-Khoury, S. Focaccia, “A spectral model for transient heat flow in a double U-tube geothermal heat pump system”, Renewable Energy, Vol. 85, pp. 195-205, 2016 DOI: https://doi.org/10.1016/j.renene.2015.06.031

T. Y. Ozudogru, C. G. Olgun, A. Senol, “3D numerical modeling of vertical geothermal heat exchangers”, Geothermics, Vol. 51, pp. 312-324, 2014 DOI: https://doi.org/10.1016/j.geothermics.2014.02.005

T. Y. Ozudogru, O. Ghasemi-Fare, G. Olgun, P. Basu, “Numerical modeling of vertical geothermal heat exchanger using finite difference and finite element techniques”, Geotechnical and Geological Engineering, Vol. 33, No. 2, pp. 291-306, 2015 DOI: https://doi.org/10.1007/s10706-014-9822-z

B. Bezyan, S. Porkhial, A. Aboui Mehrizi, “3-D simulation of heat transfer rate in geothermal pile-foundation heat exchangers with spiral pipe configuration”, Applied Thermal Engineering, Vol. 87, pp. 655-668, 2015 DOI: https://doi.org/10.1016/j.applthermaleng.2015.05.051

Downloads

How to Cite

[1]
Benyoub, M., Aour, B., Bouhacina, B. and Sadek, K. 2018. Numerical Investigation of the Physical Properties Effect on the Thermal Performance of a Vertical Geothermal Heat Exchanger. Engineering, Technology & Applied Science Research. 8, 2 (Apr. 2018), 2715–2723. DOI:https://doi.org/10.48084/etasr.1827.

Metrics

Abstract Views: 677
PDF Downloads: 402

Metrics Information

Most read articles by the same author(s)