Numerical Investigation of the Physical Properties Effect on the Thermal Performance of a Vertical Geothermal Heat Exchanger
Abstract
Low-temperature geothermal energy is a promising technique for heating and cooling residential and commercial premises, especially since it is one of the green energy solutions that respect the environment. The principle of this technique is based on thermal exchange between the heat pump and the basement using a vertically buried heat exchanger. This is usually made of a U-shaped tube inserted vertically in a borehole made in the ground and filled with a filler material. The purpose of the present study is to vary the different construction materials of the U-tube, the filling material and the soil, in order to obtain the most energy-efficient parameters. The evolution of temperature and heat flux as a function of time has been highlighted for different combinations. Knowing that an experimental study requires a considerable monetary fund, the present model has been validated using previously literature results. Recommendations on the choice of different materials of the geothermal heat exchanger are proclaimed at the end of this work.
Keywords:
geothermal energy, heat exchanger, finite volumes, temperature, heat fluxDownloads
References
B. Sanner, C. Karytsas, D. Mendrinos, L. Rybach, “Current status of ground source heat pumps and underground thermal energy storage in Europe”, Geothermics, Vol. 32, Vol. 4-6, pp. 579-588, 2003 DOI: https://doi.org/10.1016/S0375-6505(03)00060-9
J. W. Lund, D. H. Freeston, T. L. Boyd, “Direct utilization of geothermal energy 2010 worldwide review”, Geothermics, Vol. 40, No. 3, pp. 159-180, 2011 DOI: https://doi.org/10.1016/j.geothermics.2011.07.004
T. Bandos, A. E. Montero Reguera, P. J. Fernandez de Cordoba Castella, J. F. Urchueguía Schölzel, “Urchueguia, Improving parameter estimates obtained from thermal response tests: effect of ambient air temperature variations”, Geothermics, Vol. 40, No. 2, pp. 136-143, 2011 DOI: https://doi.org/10.1016/j.geothermics.2011.02.003
A. D. Chiasson, Advances in modeling of ground-source heat pump systems, MSc Thesis, Oklahoma State University, 1999
A. M. Omer, “Ground-source heat pumps systems and applications”, Renewable & Sustainable Energy Reviews, Vol. 12, No. 2, pp. 344-371, 2008 DOI: https://doi.org/10.1016/j.rser.2006.10.003
C. Yavuzturk, J. D. Spitler, S. J. Rees, “A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers”, ASHRAE Transactions, Vol. 105, No. 2, pp. 465-474, 1999
L. R. Ingersoll, “Theory of Earth Heat Exchangers for the Heat Pump, Heat Conduction”, American Society of Heating and Ventilating Engineers, Journal section, Heating, Piping, and Air Conditioning, 1950
H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, Oxford University Press, 1959
P. Eskilson, Thermal analysis of heat extraction boreholes, PhD Thesis, University of Lund, 1987
S. P. Rottmayer, W. A. Bechman, J. W. Mitchell “Simulation of a single vertical U-tube ground heat exchanger in an infinite medium”, ASHRAE Transactions, Vol. 103, pp. 651–659, 1997
N. K. Muraya, D. L. O’Neal, W. M. Heffington, “Thermal interference of adjacent legs in vertical U-tube heat exchanger for a ground-coupled heat pump”, ASHRAE Transactions,Vol. 102, No. 2, pp. 12-21, 1996
J. A. Shonder, J. V. Beck, “Determining effective soil formation thermal properties from field data using parameter estimation technique”, ASHRAE Transactions, Vol. 105, pp. 458-466, 1999
C. K. Lee, H. N. Lam, “Computer simulation of borehole ground heat exchanger for geothermal heat pump systems”, Renewable Energy, Vol. 33, No. 6, pp. 1286-1296, 2008
D. Marcotte, P. Pasquier, “On the estimation of thermal resistance in borehole thermal conductivity test”, Renewable Energy, Vol. 33, No. 11, pp. 2407-2415, 2008 DOI: https://doi.org/10.1016/j.renene.2008.01.021
Z. J. Li, M. Y. Zheng, “Development of a numerical model for the simulation of vertical U-tube ground heat exchangers”, Applied Thermal Engineering, Vol. 29, No. 5-6, pp. 920-924, 2009 DOI: https://doi.org/10.1016/j.applthermaleng.2008.04.024
C. Yavuzturk, J. D. Spitler, “A short time step response factor model for vertical ground loop heat exchangers”, ASHRAE Transactions, Vol. 105, No. 2, pp. 475-485, 1999
J. Claesson, S. Javed, “An analytical method to calculate borehole fluid temperatures for time-scales from minutes to decades”, ASHRAE Transactions,Vol. 117, No. 2, pp. 279-288, 2011
L. Lamarche, S. Kajl, B. Beauchamp, “A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems”, Geothermics, Vol. 39, No. 2, pp. 187-200, 2010 DOI: https://doi.org/10.1016/j.geothermics.2010.03.003
D. Marcotte, P. Pasquier, F. Sherif, M. Bernier, “The importance of axial effects for borehole design of geothermal heat-pump systems”, Renewable Energy, Vol. 35, No. 4, pp. 763-770, 2010 DOI: https://doi.org/10.1016/j.renene.2009.09.015
B. Bouhacina, R. Saim, H. Benzenine, H. F. Oztop, “Analysis of thermal and dynamic comportment of a geothermal vertical U-tube heat exchanger”, Energy and Buildings, Vol. 58, pp. 37-43, 2013 DOI: https://doi.org/10.1016/j.enbuild.2012.11.037
L. Pu, D. Qi, K. Li, H. Tan, Y. Li, “Simulation study on the thermal performance of vertical U-tube heat exchangers for ground source heat pump system”, Applied Thermal Engineering, Vol. 79, pp. 202-213, 2015 DOI: https://doi.org/10.1016/j.applthermaleng.2014.12.068
C. Zhang, P. Chen, Y. Liu, S. Sun, D. Peng, “An improved evaluation method for thermal performance of borehole heat exchanger”, Renewable Energy, Vol. 77, pp. 142-151, 2015 DOI: https://doi.org/10.1016/j.renene.2014.12.015
W. Fujun (Ed.), The Dynamics Analysis of the Computational Fluid, Tsinghua University Press, 2004
S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, 1980
P. Eskilson, J. Claesson, “Simulation model for thermally interacting heat extraction boreholes”, Numerical Heat Transfer, Vol. 13, No. 2, pp. 149-165, 1988 DOI: https://doi.org/10.1080/10407788808913609
C. K. Lee, H. N. Lam, “Computer simulation of borehole ground heat exchangers for geothermal heat pump systems”, Renewable Energy, Vol. 33, pp. 1289-1296, 2008 DOI: https://doi.org/10.1016/j.renene.2007.07.006
H. Y. Zeng, N. R. Diao, Z. H. Fang, “A finite line-source model for boreholes in geothermal heat exchangers”, Heat Transfer - Asian Research, Vol. 31, No. 7, pp. 558-567, 2002 DOI: https://doi.org/10.1002/htj.10057
E. J. Kim, J. J. Roux, G. Rusaouen, F. Kuznik, “Numerical modeling of geothermal vertical heat exchangers for the short time analysis using the state model size reduction technique”, Applied Thermal Engineering, Vol. 30, No. 6-7, pp. 706-714, 2010 DOI: https://doi.org/10.1016/j.applthermaleng.2009.11.019
W. Yang, M. Shi, G. Liu, Z. Chen, “A two-region simulation model of vertical U-tube ground heat exchanger and its experimental verification”, Applied Energy, Vol. 86, No. 10, pp. 2005-2012, 2009 DOI: https://doi.org/10.1016/j.apenergy.2008.11.008
D. Fadla, Manuel de maillage sous Gambit et de simulation sous Fluent applications, Laboratoire d’énergétique et de mécanique de fluides interne ENSAM, CER de Paris, 2007
Jalaluddin, A. Miyara . “Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode”, Applied Thermal Engineering, Vol. 33-34, pp. 167-174, 2012 DOI: https://doi.org/10.1016/j.applthermaleng.2011.09.030
R. Al-Khoury, S. Focaccia, “A spectral model for transient heat flow in a double U-tube geothermal heat pump system”, Renewable Energy, Vol. 85, pp. 195-205, 2016 DOI: https://doi.org/10.1016/j.renene.2015.06.031
T. Y. Ozudogru, C. G. Olgun, A. Senol, “3D numerical modeling of vertical geothermal heat exchangers”, Geothermics, Vol. 51, pp. 312-324, 2014 DOI: https://doi.org/10.1016/j.geothermics.2014.02.005
T. Y. Ozudogru, O. Ghasemi-Fare, G. Olgun, P. Basu, “Numerical modeling of vertical geothermal heat exchanger using finite difference and finite element techniques”, Geotechnical and Geological Engineering, Vol. 33, No. 2, pp. 291-306, 2015 DOI: https://doi.org/10.1007/s10706-014-9822-z
B. Bezyan, S. Porkhial, A. Aboui Mehrizi, “3-D simulation of heat transfer rate in geothermal pile-foundation heat exchangers with spiral pipe configuration”, Applied Thermal Engineering, Vol. 87, pp. 655-668, 2015 DOI: https://doi.org/10.1016/j.applthermaleng.2015.05.051
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.