Two-dimensional Numerical Estimation of Stress Intensity Factors and Crack Propagation in Linear Elastic Analysis

Authors

  • A. Boulenouar Mechanical Engineering Department, Djillali Liabes University of Sidi Bel-Abbes, Algeria
  • N. Benseddiq Laboratoire de Mécanique de Lille (LML), University of Lille1, France
  • M. Mazari Mechanical Engineering Department, Djillali Liabes University of Sidi Bel-Abbes, Algeria.
Volume: 3 | Issue: 5 | Pages: 506-510 | October 2013 | https://doi.org/10.48084/etasr.363

Abstract

When the loading or the geometry of a structure is not symmetrical about the crack axis, rupture occurs in mixed mode loading and the crack does not propagate in a straight line. It is then necessary to use kinking criteria to determine the new direction of crack propagation. The aim of this work is to present a numerical modeling of crack propagation under mixed mode loading conditions. This work is based on the implementation of the displacement extrapolation method in a FE code and the strain energy density theory in a finite element code. At each crack increment length, the kinking angle is evaluated as a function of stress intensity factors. In this paper, we analyzed the mechanical behavior of inclined cracks by evaluating the stress intensity factors. Then, we presented the examples of crack propagation in structures containing inclusions and cavities.

Keywords:

stress intensity factor, crack propagation, mixed mode, inclusion

Downloads

Download data is not yet available.

References

T. Denyse De Araújo, T. N. Bittencourt, D. Roehl, L. F. Martha, “Numerical Estimation of Fracture Parameters in Elastic and Elastic-plastic Analysis”, ECCOMAS 2000, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, September, 2000.

A. B. de Morais, “Calculation of stress intensity factors by the force method”, Engineering Fracture Mechanics, Vol. 74, No. 5, pp. 739-750, 2007 DOI: https://doi.org/10.1016/j.engfracmech.2006.06.017

J. Chang, J. Xu, Y. Mutoh, “A general mixed-mode brittle fracture criterion for cracked materials”, Engineering Fracture Mechanics, Vol. 73, No. 9, pp. 1249-1263, 2006 DOI: https://doi.org/10.1016/j.engfracmech.2005.12.011

G. Anlas, M. H. Santare, J. Lambros, “Numerical calculation of stress intensity factors in functionally graded materials”, International Journal of Fracture, Vol. 104, No. 2, pp. 131-143, 2000 DOI: https://doi.org/10.1023/A:1007652711735

S. K. Chan, I. S. Tuba, W. K. Wilson, “On the finite element method in linear fracture mechanics”, Engineering Fracture Mechanic, Vol. 2, No. 1, pp.1-17, 1970 DOI: https://doi.org/10.1016/0013-7944(70)90026-3

D. M. Parks, “A stiffness derivative finite element technique for determination of crack tip stress intensity factors”, International Journal of Fracture, Vol. 10, No. 4, pp. 487-502, 1974 DOI: https://doi.org/10.1007/BF00155252

B. Moran, C. F. Shih, “A general treatment of crack tip contour integrals”, International Journal of Fracture, Vol. 35, No. 4, pp. 295-310, 1987 DOI: https://doi.org/10.1007/BF00276359

S. Phongthanapanich, P. Dechaumphai, “Adaptive Delaunay triangulation with object-oriented programming for crack propagation analysis”, Finite Element in Analysis and Design, Vol. 40, No. 13-14, pp.1753-1771, 2004 DOI: https://doi.org/10.1016/j.finel.2004.01.002

A. M. Alshoaibi, A. K. Ariffin, “Finite element simulation of stress intensity factors in elastic-plastic crack growth”, Journal of Zhejiang University SCIENCE A, Vol. 7, No. 8, pp. 1336-1342, 2006 DOI: https://doi.org/10.1631/jzus.2006.A1336

P. O. Bouchard, F. Bay, Y. Chastel, I. Tovena,, “Crack propagation modelling using an advanced remeshing technique”, Computer Methods in Applied Mechanics and Engineering, Vol. 189, No. 3, pp. 723–742, 2000 DOI: https://doi.org/10.1016/S0045-7825(99)00324-2

M. Souiyah, A. Alshoaibi, A. Muchtar, A. K. Ariffin, “Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy”, Journal of Zhejiang University SCIENCE A, Vol. 9, No. 1, pp. 32-37, 2008 DOI: https://doi.org/10.1631/jzus.A072176

T. N. Bittencourt, P. A. Wawrzynek, A. R.Ingraffea, J. L. Sousa, “Quasi-automatic simulation of crack propagation for 2D LEFM problems”, Engineering Fracture Mechanics, Vol. 55, No. 2, pp. 321-334, 1996 DOI: https://doi.org/10.1016/0013-7944(95)00247-2

M. M. Rashid, “The arbitrary local mesh replacement method: an alternative to remeshing for crack propagation analysis”, Computer Methods in Applied Mechanics and Engineering, Vol. 154, No. 1-2, pp. 133-150, 1998 DOI: https://doi.org/10.1016/S0045-7825(97)00068-6

D. Azócar, M. Elgueta, M. C. Rivara, “Automatic LEFM crack propagation method based on local Lepp–Delaunay mesh refinement”, Advances in Engineering Software, Vol. 41, No. 2, pp. 111–119, 2010 DOI: https://doi.org/10.1016/j.advengsoft.2009.10.004

P. O. Bouchard, F. Bay, Y. Chastel, “Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria”, Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 35-36, pp. 3887–3908, 2003 DOI: https://doi.org/10.1016/S0045-7825(03)00391-8

Downloads

How to Cite

[1]
A. Boulenouar, N. Benseddiq, and M. Mazari, “Two-dimensional Numerical Estimation of Stress Intensity Factors and Crack Propagation in Linear Elastic Analysis”, Eng. Technol. Appl. Sci. Res., vol. 3, no. 5, pp. 506–510, Oct. 2013.

Metrics

Abstract Views: 1130
PDF Downloads: 628

Metrics Information

Most read articles by the same author(s)