Electrical Trees in a Composite Insulating System Consisted of Epoxy Resin and Mica: The Case of Multiple Mica Sheets For Machine Insulation
Abstract
Epoxy resin and mica sheets consist the essential insulation of rotating machine stator bars. Such an insulation, although very resistant to partial discharges, is subjected to considerable electrical stresses and consequently electrical trees may ensue. In this paper, an effort is made to simulate electrical tree propagation in multiple epoxy resin/mica sheets with the aid of Cellular Automata (CA). An attempt to compare the simulation results with experimental results is also made.
Keywords:
electrical trees, composite insulation, dielectric strength, breakdown, mica sheets, epoxy resin, machine insulationDownloads
References
D. Kind, H. Kaerner, High-voltage insulation technology, Eds. Vieweg & Sohn, Braunschweig, Germany, 1985 DOI: https://doi.org/10.1007/978-3-663-14090-0
E. Kuffel, W. S. Zaengl, J. Kuffel, High voltage engineering: fundamentals, 2nd edition, Eds. Newnes, Oxford, England, 2000
T. Tanaka, A. Greenwood, Advanced power cable technology, Vol. I, Eds. CRC Press, Boca raton, Florida, USA, 1983.
R. Vogelsang, T. Farr, K. Froehlich, “The effect of barriers on electrical tree propagation in composite insulation materials”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 13, No. 1, pp. 373-382, 2006 DOI: https://doi.org/10.1109/TDEI.2006.1624282
D. D. Christantoni, M. G. Danikas, G. E. Vardakis, A. T. Lekou, “Simulation of electrical tree growth in a composite insulating system consisted from epoxy resin and mica sheets”, International Review on Modelling and Simulation, Vol. 3, No. 2, pp. 241-249, 2010
T. Farr, R. Vogelsang, K. Froehlich, “A new deterministic model for tree in polymers with barriers”, Annual Report of Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Kitchener, Ontario, Canada, pp. 673-676, October, 2001
O. S. Gefle, S. M. Lebedev, V. Ya. Ushakov, “The mechanism of the barrier effect in solid dielectrics”, Journal of Physics D: Applied Physics, Vol. 30, pp. 3267-3273, 1997 DOI: https://doi.org/10.1088/0022-3727/30/23/010
R. Vogelsang, T. Farr, K. Froehlich, “Electrical tree propagation along barrier interfaces in epoxy resin”, Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Cancun, Mexico, pp. 946-950, October, 2002
B. R. Varlow, G. J. Malkin, “Electrical treeing in mechanically prestressed insulation”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 7, No. 6, pp. 721-724, 2000 DOI: https://doi.org/10.1109/94.891981
R. Vogelsang, R. Brutsch, K. Froehlich, “The effect of tape overlappings in winding insulations on tree growth and breakdown time”, Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Boulder, New Mexico, USA, pp. 294-297, October , 2004
B. R. Varlow, D. W. Auckland, “The influence of mechanical factors on electrical treeing”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 5, No. 5, pp. 761-766, 1998 DOI: https://doi.org/10.1109/94.729700
R. Vogelsang, R. Brutsch, K. Froehlich, “How imperfections in mica tape barriers influence tree growth and breakdown time”, Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Albuquerque, USA, pp. 657-660, October, 2003
L. Niemeyer, L. Pietronero, H. J. Wiesmann, “Fractal dimension of dielectric breakdown”, Physical Review Letters, Vol. 52, pp. 1033-1036, 1984 DOI: https://doi.org/10.1103/PhysRevLett.52.1033
H. J. Wiesmann, H. R. Zeller, “A fractal model of dielectric breakdown and prebrakdown in solid dielectrics”, Journal of Applied Physics, Vol. 60, pp. 1770-1773, 1986 DOI: https://doi.org/10.1063/1.337219
L. A. Dissado, P. J. J. Sweeny, “Physical model for breakdown structures in solid dielectrics”, Physical Review, Vol. B 48, pp. 12261-12268, 1993 DOI: https://doi.org/10.1103/PhysRevB.48.16261
J. C. Fothrgill, L. A. Dissado, P. J. J. Sweeny, “A discharge avalanche theory for the propagation of electrical trees”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 1, No. 3, pp. 474-486, 1994 DOI: https://doi.org/10.1109/94.300291
M. D. Noskov, A. S. Malinovski, M. Sack, A. J. Schwab, “Self-consistent modeling of electrical tree propagation and PD activity”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 7, No. 6, pp. 725-733, 2000 DOI: https://doi.org/10.1109/94.891982
M. G. Danikas, I. Karafyllidis, A. Thanailakis, A. M. Bruning, “Simulation of electrical tree growth in solid dielectrics containing voids of arbitrary shape”, Modelling and Simulation in Materials Science and Engineering, vol. 4, pp. 535-552, 1996. DOI: https://doi.org/10.1088/0965-0393/4/6/001
I. Karafyllidis, M. G. Danikas, A. Thanailakis, A. M. Bruning, “Simulation of electrical tree growth in solid insulating materials”, Archiv fuer Elektrotechnik, Vol. 81, pp. 183-192, 1998 DOI: https://doi.org/10.1007/BF01236238
G. E. Vardakis, M. G. Danikas, I. Karafyllidis, “Simulation of space charge effects in electrical tree propagation using Cellular Automata”, Materials Letters, Vol. 56, pp. 404-409, 2002 DOI: https://doi.org/10.1016/S0167-577X(02)00512-8
G. E. Vardakis, M. G. Danikas, “Simulation of tree propagation in polyethylene including air void by using Cellular Automata: The effect of space charges”, Archiv fuer Elektrotechnik, Vol. 84, pp. 211-216, 2002 DOI: https://doi.org/10.1007/s00202-002-0123-9
G. E. Vardakis, M. G. Danikas, “Simulation of electrical tree propagation using Cellular Automata: The case of conducting particle included in a dielectric in point-plane electrode arrangement”, Journal of Electrostatics, Vol. 63, pp. 129-142, 2005 DOI: https://doi.org/10.1016/j.elstat.2004.06.008
G. E. Vardakis, M. G. Danikas, “Simulation of electrical tree propagation in a solid insulating material containing spherical insulating particle of a different permittivity with the aid of Cellular Automata”, Facta Universitatis, Vol. 17, pp. 377-389, 2004 DOI: https://doi.org/10.2298/FUEE0403377V
J. von Neumann, Theory of self-reproducing automata, University of Illinois, Urbana, 1966
B. Chopard, M. Droz, Cellular Automata modeling of physical systems, Cambridge University Press, 1998 DOI: https://doi.org/10.1017/CBO9780511549755
G. E. Vardakis, Breakdown phenomena in solid insulating materials: A study of electrical tree propagation, Ph. D. Thesis, Democritus University of Thrace, Department of Electrical and Computer Engineering, Xanthi, Greece, 2006 (in Greek)
M. G. Danikas, A. D. Karlis, “Some observations on the dielectric breakdown and the importance of cavities in insulating materials used for cables and electrical machines”, Advances in Electrical and Computer Engineering, Vol. 11, No. 2, pp. 123-126, 2011 DOI: https://doi.org/10.4316/aece.2011.02020
A. Kelen, M. G. Danikas, “Evidence and presumption in PD diagnostics”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 2, No. 5, pp. 780-795, 1995 DOI: https://doi.org/10.1109/94.469975
A. Kelen, “Studies on partial discharges on solid dielectrics: A contribution to the discharge resistance testing of insulating materials”, Acta Polytechnica Scandinavica, No. EI 16, pp. 138, 1967
M. S. Naidu, V. Kamaraju, High voltage engineering, 2nd edition, Eds. Tata McGraw-Hill Publishing Co. Ltd., New Delhi, India, 2000
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.