Numerical Analysis of Crack Progress in Different Areas of a Friction Stir Welded Bead for an 5251 H14 Aluminum Alloy Specimen

Authors

  • Y. Kambouz Department of Engineering Mechanics, Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
  • M. Benguediab Department of Engineering Mechanics, Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
  • B. Bouchouicha Department of Engineering Mechanics, Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
Volume: 4 | Issue: 1 | Pages: 581-586 | February 2014 | https://doi.org/10.48084/etasr.381

Abstract

The assemblies welded by Friction Stir Welding have a major advantage which is the absence of a metal filler. This process contributes to the welding of materials that are known to be difficult to weld using the conventional techniques often employed in the field of transport, for example in the automobile body by applying a spot welding. The numerical modeling of this type of process is complex, not only in terms of the variety of physical phenomena which must be considered, but also because of the experimental procedure that must be followed in order to verify and validate numerical predictions. In this work, a finite element model is proposed in order to simulate the crack propagation under monotonic loading in different areas of the weld seam of a strain hardening CT-50 aluminum alloy 5251H14 specimen.

Keywords:

FSW, micro hardness, 5251 H14 aluminum alloy, crack, stress intensity factor

Downloads

Download data is not yet available.

References

W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith P, C. J. Dawes, “Friction-stir butt weldin”, G.B. Patent No. 9125978.8, International patent application No. PCT/GB92/02203, 1991

M. Ericsson, R. Sandstrom, “Influence of welding speed on the fatigue of friction stir welds and comparison with MIG and TIG”, International Journal of Fatigue, Vol. 25, No. 12, pp. 1379–1387, 2003 DOI: https://doi.org/10.1016/S0142-1123(03)00059-8

P. M. G. P. Moreira, A. M. P. de Jesus, A. S. Ribeiro, P. M. S. T. de Castro, “Assessment of the fatigue behaviour of friction stir welded joints: aluminum alloy 6082-T6”, Key Engineering Materials, Vol. 348–349, pp. 209–212, 2007 DOI: https://doi.org/10.4028/www.scientific.net/KEM.348-349.209

P. M. G. P. Moreira, A. M. P. de Jesus, A. S. Ribeiro, . M. S. T. de Castro, “Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: a comparison, “, Theoretical and Applied Fracture Mechanics, Vol. 50, No. 2, pp. 81-91, 2008 DOI: https://doi.org/10.1016/j.tafmec.2008.07.007

Y. Kobayashi, M. Sakuma, Y. Tanaka, K. Matsuoka, “Fatigue strength of friction stir welding joints of aluminium alloy 6082 extruded shape”, Welding International, Vol. 21, No. 1, pp. 18–24, 2007 DOI: https://doi.org/10.1533/wint.2007.3679

J. D. Costa, J. A. M. Ferreira, L. P. Borrego, “Influence of spectrum loading on fatigue resistance of AA6082 friction stir welds”, International Journal of Structural Integrity, Vol. 2, No. 2, pp. 122–134, 2011 DOI: https://doi.org/10.1108/17579861111135888

K. V. Jata, K. K. Sankaran, J. J. Ruschau, “Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451”, Metallurgical and Materials Transactions A, Vol. 31, No. 9, pp. 2181–2192, 2000 DOI: https://doi.org/10.1007/s11661-000-0136-9

A. L. Etter, T. Baudin, N. Fredj, R. Penelle, “Recrystallization mechanisms in 5251 H14 and 5251 O aluminum friction stir welds”, Materials Science and Engineering: A, Vol. 445-446, pp. 94-99, 2007 DOI: https://doi.org/10.1016/j.msea.2006.09.036

G. Busu, P. E. Irving, “The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints”, International Journal of Fatigue, Vol. 25, No. 1, pp. 77–88, 2003 DOI: https://doi.org/10.1016/S0142-1123(02)00038-5

B. Bouchouicha, Contribution à l’étude de la déchirure ductile et de la propagation des fissures en fatigue dans les joints soudés, Thèse de doctorat, Djillali Liabes University of Sidi Bel Abbes, 2007

C. Genevois, “Genesis of the microstructures during friction stir welding of aluminium alloys of the serie 2000 and 5000 and resulting mechanical behavior” (Genèse des microstructures lors du soudage par friction malaxage d'alliages d'aluminium de la série 2000 & 5000 et comportement mécanique résultant), Thèse de doctorat, Institut National Polytechnique de Grenoble, 2004.

M. Mazari, “Caractérisation mécanique des assemblages soudés par friction malaxage”, WORKSHOP: Mécanique et Matériaux de la Microstructure à la structure: Approches Expérimentales & Simulations Numériques, Mascara, 2010

J. Souto Grela, E. B. Blanco Viana, D. Martinez, E. Piñeiro, “Numerical simulation in welding process: optimizing structures with sequence and inertial study”, Matériaux & Techniques, Vol. 100, pp. 317–326, 2012 DOI: https://doi.org/10.1051/mattech/2012042

E. Feulvarch, Modélisation numérique du soudage par friction-malaxage, Thèse de doctorat de l’Université de Saint Etienne, 2005

M. Merzoug, Etude paramétrique du soudage par friction malaxage, Thèse de doctorat, Djillali Liabes University of Sidi Bel Abbes, 2011

Downloads

How to Cite

[1]
Kambouz, Y., Benguediab, M. and Bouchouicha, B. 2014. Numerical Analysis of Crack Progress in Different Areas of a Friction Stir Welded Bead for an 5251 H14 Aluminum Alloy Specimen. Engineering, Technology & Applied Science Research. 4, 1 (Feb. 2014), 581–586. DOI:https://doi.org/10.48084/etasr.381.

Metrics

Abstract Views: 606
PDF Downloads: 288

Metrics Information

Most read articles by the same author(s)