Effect of the Triaxiality in Plane Stress Conditions. Triaxiality Effect in a PVC Material

N. Selini, M. Elmeguenni, M. Benguediab

Abstract


Polymer materials are gaining more and more importance in engineering applications. A new methodology of analysis is required in order to assess the capability of such material in withstanding complex loads. Therefore, the behavior of these materials currently arouses a great research interest. The use of PVC plastic pipes in pressure vessels and pipelines has increased rapidly in the last decade. In order to determine the plastic behavior of PVC, an experimental method is presented. Through the results obtained from experimental tests, in the first part of this paper, we investigate the use of a phenomenological model proposed by G’Sell and Jonas. The true stress-strain response under large plastic deformation was investigated in different stress triaxiality frameworks. Particular attention was given to volumetric strain evolution, separation resulting from elastic volumetric strain, plastic volumetric strain and pure shear. The effect of stress triaxiality on plastic instability and fracture strain was also examined. The deformation process should be considered as explained, and the anisotropic plastic response induced by the deformation could be introduced in constitutive equations of G’Sell.


Keywords


Plane stress; Triaxiality; Plastic instability; PVC

Full Text:

PDF

References


A. A. Benzerga, “Micromechanics of coalescence in ductile fracture”, J. Mech. Phys. Solids, Vol. 50, No. 6, pp. 1331-1362, 2002

A. A. Benzerga, J. Besson, A. Pineau, “Anisotropic ductile fracture. Part I: experiments”, Acta Mater., Vol. 52, No. 15, pp. 4623-4638, 2004

A. A. Benzerga, J. Besson, A. Pineau, “Anisotropic ductile fracture. Part II: theory”, Acta Mater., Vol. 52, No. 15, pp. 4639-4650, 2004

X. Gao, T. Wang, J. Kim, “On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution”, Int. J. Sol. Struct., Vol. 42, No. 18-19, pp. 5097-5117, 2005

S. M. Keralavarma, A. A. Benzerga, “A constitutive model for plastically anisotropic solids with non-spherical voids”, J. Mech. Phys. Solids, Vol. 58, No. 6, pp. 874-901, 2010

S. M. Keralavarma, S. Hoelscher, A. A. Benzerga, “Void growth and coalescence in anisotropic plastic solids”, Int. J. Sol. Struct., Vol. 48, No. 11-12, pp. 1696-1710, 2011

A .E. Huespe, A. Needleman, J. Oliver, P. J. Sánchez, ”A finite thickness band method for ductile fracture analysis”, Int. J. Plast., Vol 25, No. 12, pp. 2349-2365, 2009

A. E. Huespe, A. Needleman, J. Oliver, P. J. Sánchez, ”A finite strain, finite band method for modeling ductile fracture”, Int. J. Plast., Vol. 28, No. 1, pp. 53-69, 2012

Y. Li, D. G. Karr, “Prediction of ductile fracture in tension by bifurcation, localization, and imperfection analyses”, Int. J. Plast., Vol. 25, No. 6, pp. 1128-1153, 2009

Y. Li, T. Wierzbicki, “Prediction of plane strain fracture of AHSS sheets with post-initiation softening”, Int. J. Sol. Struct., Vol. 47, No. 17, pp. 2316-2327, 2010

H. Li, M. W. Fu, J. Lu, H. Yang, “Ductile fracture: Experiments and computations”, Int. J. Plast., Vol. 27, No. 2, pp. 147-180, 2011

H. Stumpf, J. Makowski, K. Hackl, “Dynamical evolution of fracture process region in ductile materials”, Int. J. Plast., Vol. 25, No. 5, pp. 995-1010, 2009

S. Akhtar, H. L. Khan, “A new approach for ductile fracture prediction on Al 2024-T351 alloy”, Int. J. Plast., Vol. 35, pp. 1-12, 2012

L. Lecarme, C. Tekoglu, T. Pardoen, “Void growth and coalescence in ductile solids with stage III and stage IV strain hardening”, Int. J. Plast., Vol. 27, No. 8, pp. 1203-1223, 2011

M. Dunand, D. Mohr, “Hybrid experimental–numerical analysis of basic ductile fracture experiments for sheet metals”, Int. J. Sol. Struct., Vol. 47, No. 9, pp. 1130-1143, 2010

M. Dunand, D. Mohr, “Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading”, Eng. Fract. Mech., Vol. 78, No. 17, pp. 2919-2934, 2011

S. M. Graham, T. Zhang, X. Gao, M. Hayden, “Development of a combined tension–torsion experiment for calibration of ductile fracture models under conditions of low triaxiality”, Int. J. Mech. Sci., Vol. 54, No.1, pp. 172-181, 2012

C. G’Sell, J. J. Jonas, “Determination of the plastic behavior of solid polymers at constant true strain rate”, J. Mater. Sci., Vol. 14, No. 3, pp. 583-591, 1979

C. G’Sell, Plastic deformation of amorphous and semi-crystalline materials, Eds., B. Escaig, C. G’Sell, Les Editions de Physique, Les Ulis, pp. 375, 1982

C. G’Sell, N. A. Aly-Helal, J. J. Jonas, “Effect of stress triaxiality on neck propagation during the tensile stretching of solid polymers”, J. Mater. Sci., Vol. 18, No. 6, pp. 1731-1742, 1983

C. G’Sell, A. Marquez-Lucero, P. Gilormini, J. J. Jonas, “Flow localization and determination of constitutive relations in highly drawn polymers: One dimensional Eulerian formulation of the effect of stress triaxiality”, Acta. Metall., Vol. 33, No. 5, pp. 759-770, 1985

C. G’Sell, “Instabilités de déformation pendant l’étirage des polymères solides, Revue de Physique Appliquée, Vol. 23, No. 6, pp. 1085-1101, 1988

C. G’Sell, J. M. Hiver, A. Dahoun, A. Souahi, “Video-controlled tensile testing of polymers and metals beyond the necking point”, J. Mater. Sci., Vol. 27, No. 18, pp. 5031-5039, 1992

C. G’Sell, J. M. Hiver, F. Gehin, “Real-time quantitative determination of volume variations in polymers under plastic strain”, In: Deformation, Yield and Fracture of Polymers, The Institute of Metals, London, pp. 371-374, 2000

C. G’Sell, J. M. Hiver, A. Dahoun, “Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking”, Int. J. Sol. Struct., Vol. 39, No. 13-14, pp. 3857-3872, 2002

J. M. Schultz, “Microstructural aspects of failure in semi-crystalline polymers”, Polym. Eng. Sci., Vol. 24, pp. 770-785, 1984

M. C. Boyce, D. M. Parks, A. S. Argon, “Large inelastic deformation of glassy polymers. Part I: rate dependent constitutive model”, Mech. Mater., Vol. 7, No. 1 , pp. 15-33, 1988

S. G. Bardenhagen, M. G. Stout, G. T. Gray, “Three-dimensional, finite deformation, viscoplastic constitutive models for polymeric materials”, Mech. Mater., Vol. 25, No. 4, pp. 235-253, 1997

T. A. Tervoort, R. J. M. Smit, W. A. M. Brekelmans, L. E. Govaert, “A constitutive equation for the elasto-viscoplastic deformation of glassy polymers”, Mech. Time-depend. Mat., Vol. 1, No. 3, pp. 269-291, 1997

J. M. Gloaguen, J. M. Lefebvre, “Plastic deformation behaviour of thermoplastic/clay nanocomposites”, Polymer, Vol. 42, No. 13, pp. 5841-5847, 2001

L. Anand, M. E. Gurtin, “A theory of amorphous solids undergoing large deformations, with application to polymeric glasses”, Int. J. Sol. Struct., Vol. 40, No. 6, pp. 1465-1487, 2003

F. Zaïri, B. Aour, J. M. Gloaguen, M. Naït-Abdelaziz, J. M. Lefebvre, “Numerical modeling of elastic–viscoplastic equal channel angular extrusion process of a polymer”, Comp. Mater. Sci., Vol. 38, No. 1, pp. 202-216, 2006

F. Zaïri, M. Naït-Abdelaziz, J. M. Gloaguen, J. M. Lefebvre, “Modeling of the elasto-viscoplastic damage behaviour of glassy polymers”, Int. J. Plast., Vol. 24, No. 6, pp. 945-965, 2008

F. Zaïri, M. Naït-Abdelaziz, J. M. Gloaguen, J. M. Lefebvre, “A physically based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation”, Int. J. Plast., Vol. 27, No. 1, pp. 25-51, 2011

A. D. Mulliken, M. C. Boyce, “Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates”, Int. J. Sol. Struct., Vol. 43, No. 5, pp. 1331-1356, 2006

J. Richeton, S. Ahzi, K. S. Vecchio, F. C. Jiang, A. Makradi, “Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates”, Int. J. Sol. Struct., Vol. 44, No. 24, pp. 7938-7954, 2007

S. Castagnet, Y. Deburck, “Relative influence of microstructure and macroscopic triaxiality on cavitation damage in a semi-crystalline polymer”, Mat. Sci. Eng. A, Vol. 448, No. 1-2, pp. 56-66, 2007

G. Boisot, L. Laiarinandrasana, J. Besson, C. Fond, G. Hochstetter, “Experimental investigations and modeling of volume change induced by void growth in polyamide 11”, Int. J. Sol. Struct., Vol. 48, No. 19, pp. 2642-2654, 2011

A. R. Ragab, M. A. Mahmoud, S. A. Khorshied, “Yielding of commercial poly(vinyl chloride) pipe material”, J. Appl. Polym. Sci., Vol. 81, No. 4, pp. 991-999, 2001

H. Mae, “Characterization of material ductility of PP/EPR/talc blend under wide range of stress triaxiality at intermediate and high strain rates”, J. Appl. Polym. Sci., Vol. 111, No. 2, pp. 854-868, 2008

Y. Bai, Y. Bao, T. Wierzbicki, “Fracture of prismatic aluminum tubes under reverse straining”, Int. J. Impact Eng., Vol. 32, No. 5, pp. 671-701, 2006

Y. Bai, T. Wierzbicki, “A new model of metal plasticity and fracture with pressure and Lode dependence”, Int. J. Plast., Vol. 24, No. 6, pp. 1071-1096, 2008

Y. Bai, “Effect of loading history on necking and fracture”, PhD thesis, Massachusetts Institute of Technology, USA, 2008

M. Brünig, S. Gerke, “Simulation of damage evolution in ductile metals undergoing dynamic loading conditions”, Int. J. Plast., Vol. 27, No. 10, pp. 1598-1617, 2011

L. Malcher, F. M. Andrade Pires, J. M. A. Cesar de Sa, “An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality”, Int. J. Plast., Vol. 30-31, pp. 81-115, 2012

M. Luo, M. Dunand, D. Mohr, “Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading – Part II: Ductile fracture”, Int. J. Plast., Vol. 32-33, pp. 36-58, 2012

J. Zhou, X. Gao, M. Hayden, J. A. Joyce, “Modeling the ductile fracture behavior of an aluminum alloy 5083-H116 including the residual stress effect”, Eng. Fract. Mech., Vol. 85, pp. 103-116, 2012

A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth-I. Yield criteria and flow rules for porous ductile media”, J. Eng. Mater. Tech. Asme, Vol. 99, pp. 2-15, 1977

A. L. Gurson, “Porous rigid-plastic materials containing rigid inclusions-yield function, plastic potential and void nucleation”, In. Proc. Int. conf. Fracture. ed. D.M.R. Taplin, Vol. 2A, pp. 357-364, Pergamon Press, 1977

S. Yi, W. Duo, “A lower bound approach to the yield loci of porous materials”, Acta Mech. Sin., Vol. 5, No. 3, pp. 237-243, 1989

A. Lazzeri, C. B. Bucknall, “Dilatational bands in rubber-toughened polymers”, J. Mater. Sci., Vol. 28, No. 24, pp. 6799-6808, 1993

H. Y. Jeong, “A new yield function and a hydrostatic stress-controlled void nucleation model for porous solids with pressure-sensitive matrices”, Int. J. Sol. Struct., Vol. 39, No. 5, pp. 1385-1403, 2002

H. Y. Jeong, J. Pan, “A macroscopic constitutive law for porous solid with pressure-sensitive matrices and its implications to plastic flow localization”, Int. J. Sol. Struct., Vol. 32, No. 24, pp. 3669-3691, 1995

A. C. Steenbrink, E. Van der Giessen, P. D. Wu, “Void growth in glassy polymers”, J. Mech. Phys. Solids, Vol. 45, No. 3, pp. 405-437, 1997

H. Y. Jeong, “A new yield function and a hydrostatic stress-controlled void nucleation model for porous solids with pressure-sensitive matrices”, Int. J. Sol. Struct., Vol. 39, No. 5, pp. 1385-1403, 2002

Th. Seelig, E. Van der Giessen, “Localized plastic deformation in ternary polymer blends”, Int. J. Sol. Struct., Vol. 39,No. 13-14, pp. 3505-3522, 2002

P. J. Sanchez, A. E. Huespe, J. Oliver, “On some topics for the numerical simulation of ductile fracture”, Int. J. Plast., Vol. 24, No. 6, pp. 1008-1038, 2008

D. Heikens, S. D. Sjoerdsma, W. J. Coumans, “A mathematical relation between volume strain, elongational strain and stress in homogenous deformation”, J. Mater. Sci., Vol. 16, No. 2, 429-432, 1981

P. W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw- Hill, New York, 1952




eISSN: 1792-8036     pISSN: 2241-4487