Effect of the Triaxiality in Plane Stress Conditions. Triaxiality Effect in a PVC Material

Authors

  • N. Selini Djillali Liabes University of Sidi Bel Abbes, Algeria
  • M. Elmeguenni Department of Engineering Mechanics, Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
  • M. Benguediab Department of Engineering Mechanics, Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
Volume: 3 | Issue: 1 | Pages: 373-380 | February 2013 | https://doi.org/10.48084/etasr.302

Abstract

Polymer materials are gaining more and more importance in engineering applications. A new methodology of analysis is required in order to assess the capability of such material in withstanding complex loads. Therefore, the behavior of these materials currently arouses a great research interest. The use of PVC plastic pipes in pressure vessels and pipelines has increased rapidly in the last decade. In order to determine the plastic behavior of PVC, an experimental method is presented. Through the results obtained from experimental tests, in the first part of this paper, we investigate the use of a phenomenological model proposed by G’Sell and Jonas. The true stress-strain response under large plastic deformation was investigated in different stress triaxiality frameworks. Particular attention was given to volumetric strain evolution, separation resulting from elastic volumetric strain, plastic volumetric strain and pure shear. The effect of stress triaxiality on plastic instability and fracture strain was also examined. The deformation process should be considered as explained, and the anisotropic plastic response induced by the deformation could be introduced in constitutive equations of G’Sell.

Keywords:

Plane stress, Triaxiality, Plastic instability, PVC

Downloads

Download data is not yet available.

References

A. A. Benzerga, “Micromechanics of coalescence in ductile fracture”, J. Mech. Phys. Solids, Vol. 50, No. 6, pp. 1331-1362, 2002 DOI: https://doi.org/10.1016/S0022-5096(01)00125-9

A. A. Benzerga, J. Besson, A. Pineau, “Anisotropic ductile fracture. Part I: experiments”, Acta Mater., Vol. 52, No. 15, pp. 4623-4638, 2004 DOI: https://doi.org/10.1016/j.actamat.2004.06.020

A. A. Benzerga, J. Besson, A. Pineau, “Anisotropic ductile fracture. Part II: theory”, Acta Mater., Vol. 52, No. 15, pp. 4639-4650, 2004 DOI: https://doi.org/10.1016/j.actamat.2004.06.019

X. Gao, T. Wang, J. Kim, “On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution”, Int. J. Sol. Struct., Vol. 42, No. 18-19, pp. 5097-5117, 2005 DOI: https://doi.org/10.1016/j.ijsolstr.2005.02.028

S. M. Keralavarma, A. A. Benzerga, “A constitutive model for plastically anisotropic solids with non-spherical voids”, J. Mech. Phys. Solids, Vol. 58, No. 6, pp. 874-901, 2010 DOI: https://doi.org/10.1016/j.jmps.2010.03.007

S. M. Keralavarma, S. Hoelscher, A. A. Benzerga, “Void growth and coalescence in anisotropic plastic solids”, Int. J. Sol. Struct., Vol. 48, No. 11-12, pp. 1696-1710, 2011 DOI: https://doi.org/10.1016/j.ijsolstr.2011.02.020

A .E. Huespe, A. Needleman, J. Oliver, P. J. Sánchez, ”A finite thickness band method for ductile fracture analysis”, Int. J. Plast., Vol 25, No. 12, pp. 2349-2365, 2009 DOI: https://doi.org/10.1016/j.ijplas.2009.03.005

A. E. Huespe, A. Needleman, J. Oliver, P. J. Sánchez, ”A finite strain, finite band method for modeling ductile fracture”, Int. J. Plast., Vol. 28, No. 1, pp. 53-69, 2012 DOI: https://doi.org/10.1016/j.ijplas.2011.05.010

Y. Li, D. G. Karr, “Prediction of ductile fracture in tension by bifurcation, localization, and imperfection analyses”, Int. J. Plast., Vol. 25, No. 6, pp. 1128-1153, 2009 DOI: https://doi.org/10.1016/j.ijplas.2008.07.001

Y. Li, T. Wierzbicki, “Prediction of plane strain fracture of AHSS sheets with post-initiation softening”, Int. J. Sol. Struct., Vol. 47, No. 17, pp. 2316-2327, 2010 DOI: https://doi.org/10.1016/j.ijsolstr.2010.04.028

H. Li, M. W. Fu, J. Lu, H. Yang, “Ductile fracture: Experiments and computations”, Int. J. Plast., Vol. 27, No. 2, pp. 147-180, 2011 DOI: https://doi.org/10.1016/j.ijplas.2010.04.001

H. Stumpf, J. Makowski, K. Hackl, “Dynamical evolution of fracture process region in ductile materials”, Int. J. Plast., Vol. 25, No. 5, pp. 995-1010, 2009 DOI: https://doi.org/10.1016/j.ijplas.2008.04.004

S. Akhtar, H. L. Khan, “A new approach for ductile fracture prediction on Al 2024-T351 alloy”, Int. J. Plast., Vol. 35, pp. 1-12, 2012 DOI: https://doi.org/10.1016/j.ijplas.2012.01.003

L. Lecarme, C. Tekoglu, T. Pardoen, “Void growth and coalescence in ductile solids with stage III and stage IV strain hardening”, Int. J. Plast., Vol. 27, No. 8, pp. 1203-1223, 2011 DOI: https://doi.org/10.1016/j.ijplas.2011.01.004

M. Dunand, D. Mohr, “Hybrid experimental–numerical analysis of basic ductile fracture experiments for sheet metals”, Int. J. Sol. Struct., Vol. 47, No. 9, pp. 1130-1143, 2010 DOI: https://doi.org/10.1016/j.ijsolstr.2009.12.011

M. Dunand, D. Mohr, “Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading”, Eng. Fract. Mech., Vol. 78, No. 17, pp. 2919-2934, 2011 DOI: https://doi.org/10.1016/j.engfracmech.2011.08.008

S. M. Graham, T. Zhang, X. Gao, M. Hayden, “Development of a combined tension–torsion experiment for calibration of ductile fracture models under conditions of low triaxiality”, Int. J. Mech. Sci., Vol. 54, No.1, pp. 172-181, 2012 DOI: https://doi.org/10.1016/j.ijmecsci.2011.10.007

C. G’Sell, J. J. Jonas, “Determination of the plastic behavior of solid polymers at constant true strain rate”, J. Mater. Sci., Vol. 14, No. 3, pp. 583-591, 1979 DOI: https://doi.org/10.1007/BF00772717

C. G’Sell, Plastic deformation of amorphous and semi-crystalline materials, Eds., B. Escaig, C. G’Sell, Les Editions de Physique, Les Ulis, pp. 375, 1982

C. G’Sell, N. A. Aly-Helal, J. J. Jonas, “Effect of stress triaxiality on neck propagation during the tensile stretching of solid polymers”, J. Mater. Sci., Vol. 18, No. 6, pp. 1731-1742, 1983 DOI: https://doi.org/10.1007/BF00542069

C. G’Sell, A. Marquez-Lucero, P. Gilormini, J. J. Jonas, “Flow localization and determination of constitutive relations in highly drawn polymers: One dimensional Eulerian formulation of the effect of stress triaxiality”, Acta. Metall., Vol. 33, No. 5, pp. 759-770, 1985 DOI: https://doi.org/10.1016/0001-6160(85)90099-9

C. G’Sell, “Instabilités de déformation pendant l’étirage des polymères solides, Revue de Physique Appliquée, Vol. 23, No. 6, pp. 1085-1101, 1988 DOI: https://doi.org/10.1051/rphysap:019880023060108500

C. G’Sell, J. M. Hiver, A. Dahoun, A. Souahi, “Video-controlled tensile testing of polymers and metals beyond the necking point”, J. Mater. Sci., Vol. 27, No. 18, pp. 5031-5039, 1992 DOI: https://doi.org/10.1007/BF01105270

C. G’Sell, J. M. Hiver, F. Gehin, “Real-time quantitative determination of volume variations in polymers under plastic strain”, In: Deformation, Yield and Fracture of Polymers, The Institute of Metals, London, pp. 371-374, 2000

C. G’Sell, J. M. Hiver, A. Dahoun, “Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking”, Int. J. Sol. Struct., Vol. 39, No. 13-14, pp. 3857-3872, 2002 DOI: https://doi.org/10.1016/S0020-7683(02)00184-1

J. M. Schultz, “Microstructural aspects of failure in semi-crystalline polymers”, Polym. Eng. Sci., Vol. 24, pp. 770-785, 1984 DOI: https://doi.org/10.1002/pen.760241007

M. C. Boyce, D. M. Parks, A. S. Argon, “Large inelastic deformation of glassy polymers. Part I: rate dependent constitutive model”, Mech. Mater., Vol. 7, No. 1 , pp. 15-33, 1988 DOI: https://doi.org/10.1016/0167-6636(88)90003-8

S. G. Bardenhagen, M. G. Stout, G. T. Gray, “Three-dimensional, finite deformation, viscoplastic constitutive models for polymeric materials”, Mech. Mater., Vol. 25, No. 4, pp. 235-253, 1997 DOI: https://doi.org/10.1016/S0167-6636(97)00007-0

T. A. Tervoort, R. J. M. Smit, W. A. M. Brekelmans, L. E. Govaert, “A constitutive equation for the elasto-viscoplastic deformation of glassy polymers”, Mech. Time-depend. Mat., Vol. 1, No. 3, pp. 269-291, 1997 DOI: https://doi.org/10.1023/A:1009720708029

J. M. Gloaguen, J. M. Lefebvre, “Plastic deformation behaviour of thermoplastic/clay nanocomposites”, Polymer, Vol. 42, No. 13, pp. 5841-5847, 2001 DOI: https://doi.org/10.1016/S0032-3861(00)00901-0

L. Anand, M. E. Gurtin, “A theory of amorphous solids undergoing large deformations, with application to polymeric glasses”, Int. J. Sol. Struct., Vol. 40, No. 6, pp. 1465-1487, 2003 DOI: https://doi.org/10.1016/S0020-7683(02)00651-0

F. Zaïri, B. Aour, J. M. Gloaguen, M. Naït-Abdelaziz, J. M. Lefebvre, “Numerical modeling of elastic–viscoplastic equal channel angular extrusion process of a polymer”, Comp. Mater. Sci., Vol. 38, No. 1, pp. 202-216, 2006 DOI: https://doi.org/10.1016/j.commatsci.2006.02.008

F. Zaïri, M. Naït-Abdelaziz, J. M. Gloaguen, J. M. Lefebvre, “Modeling of the elasto-viscoplastic damage behaviour of glassy polymers”, Int. J. Plast., Vol. 24, No. 6, pp. 945-965, 2008 DOI: https://doi.org/10.1016/j.ijplas.2007.08.001

F. Zaïri, M. Naït-Abdelaziz, J. M. Gloaguen, J. M. Lefebvre, “A physically based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation”, Int. J. Plast., Vol. 27, No. 1, pp. 25-51, 2011 DOI: https://doi.org/10.1016/j.ijplas.2010.03.007

A. D. Mulliken, M. C. Boyce, “Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates”, Int. J. Sol. Struct., Vol. 43, No. 5, pp. 1331-1356, 2006 DOI: https://doi.org/10.1016/j.ijsolstr.2005.04.016

J. Richeton, S. Ahzi, K. S. Vecchio, F. C. Jiang, A. Makradi, “Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates”, Int. J. Sol. Struct., Vol. 44, No. 24, pp. 7938-7954, 2007 DOI: https://doi.org/10.1016/j.ijsolstr.2007.05.018

S. Castagnet, Y. Deburck, “Relative influence of microstructure and macroscopic triaxiality on cavitation damage in a semi-crystalline polymer”, Mat. Sci. Eng. A, Vol. 448, No. 1-2, pp. 56-66, 2007 DOI: https://doi.org/10.1016/j.msea.2006.11.100

G. Boisot, L. Laiarinandrasana, J. Besson, C. Fond, G. Hochstetter, “Experimental investigations and modeling of volume change induced by void growth in polyamide 11”, Int. J. Sol. Struct., Vol. 48, No. 19, pp. 2642-2654, 2011 DOI: https://doi.org/10.1016/j.ijsolstr.2011.05.016

A. R. Ragab, M. A. Mahmoud, S. A. Khorshied, “Yielding of commercial poly(vinyl chloride) pipe material”, J. Appl. Polym. Sci., Vol. 81, No. 4, pp. 991-999, 2001 DOI: https://doi.org/10.1002/app.1521

H. Mae, “Characterization of material ductility of PP/EPR/talc blend under wide range of stress triaxiality at intermediate and high strain rates”, J. Appl. Polym. Sci., Vol. 111, No. 2, pp. 854-868, 2008 DOI: https://doi.org/10.1002/app.29069

Y. Bai, Y. Bao, T. Wierzbicki, “Fracture of prismatic aluminum tubes under reverse straining”, Int. J. Impact Eng., Vol. 32, No. 5, pp. 671-701, 2006 DOI: https://doi.org/10.1016/j.ijimpeng.2005.05.002

Y. Bai, T. Wierzbicki, “A new model of metal plasticity and fracture with pressure and Lode dependence”, Int. J. Plast., Vol. 24, No. 6, pp. 1071-1096, 2008 DOI: https://doi.org/10.1016/j.ijplas.2007.09.004

Y. Bai, “Effect of loading history on necking and fracture”, PhD thesis, Massachusetts Institute of Technology, USA, 2008

M. Brünig, S. Gerke, “Simulation of damage evolution in ductile metals undergoing dynamic loading conditions”, Int. J. Plast., Vol. 27, No. 10, pp. 1598-1617, 2011 DOI: https://doi.org/10.1016/j.ijplas.2011.02.003

L. Malcher, F. M. Andrade Pires, J. M. A. Cesar de Sa, “An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality”, Int. J. Plast., Vol. 30-31, pp. 81-115, 2012 DOI: https://doi.org/10.1016/j.ijplas.2011.10.005

M. Luo, M. Dunand, D. Mohr, “Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading – Part II: Ductile fracture”, Int. J. Plast., Vol. 32-33, pp. 36-58, 2012 DOI: https://doi.org/10.1016/j.ijplas.2011.11.001

J. Zhou, X. Gao, M. Hayden, J. A. Joyce, “Modeling the ductile fracture behavior of an aluminum alloy 5083-H116 including the residual stress effect”, Eng. Fract. Mech., Vol. 85, pp. 103-116, 2012 DOI: https://doi.org/10.1016/j.engfracmech.2012.02.014

A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth-I. Yield criteria and flow rules for porous ductile media”, J. Eng. Mater. Tech. Asme, Vol. 99, pp. 2-15, 1977 DOI: https://doi.org/10.1115/1.3443401

A. L. Gurson, “Porous rigid-plastic materials containing rigid inclusions-yield function, plastic potential and void nucleation”, In. Proc. Int. conf. Fracture. ed. D.M.R. Taplin, Vol. 2A, pp. 357-364, Pergamon Press, 1977 DOI: https://doi.org/10.1016/B978-0-08-022138-0.50058-7

S. Yi, W. Duo, “A lower bound approach to the yield loci of porous materials”, Acta Mech. Sin., Vol. 5, No. 3, pp. 237-243, 1989 DOI: https://doi.org/10.1007/BF02487985

A. Lazzeri, C. B. Bucknall, “Dilatational bands in rubber-toughened polymers”, J. Mater. Sci., Vol. 28, No. 24, pp. 6799-6808, 1993 DOI: https://doi.org/10.1007/BF00356433

H. Y. Jeong, “A new yield function and a hydrostatic stress-controlled void nucleation model for porous solids with pressure-sensitive matrices”, Int. J. Sol. Struct., Vol. 39, No. 5, pp. 1385-1403, 2002

H. Y. Jeong, J. Pan, “A macroscopic constitutive law for porous solid with pressure-sensitive matrices and its implications to plastic flow localization”, Int. J. Sol. Struct., Vol. 32, No. 24, pp. 3669-3691, 1995 DOI: https://doi.org/10.1016/0020-7683(95)00009-Y

A. C. Steenbrink, E. Van der Giessen, P. D. Wu, “Void growth in glassy polymers”, J. Mech. Phys. Solids, Vol. 45, No. 3, pp. 405-437, 1997 DOI: https://doi.org/10.1016/S0022-5096(96)00093-2

H. Y. Jeong, “A new yield function and a hydrostatic stress-controlled void nucleation model for porous solids with pressure-sensitive matrices”, Int. J. Sol. Struct., Vol. 39, No. 5, pp. 1385-1403, 2002 DOI: https://doi.org/10.1016/S0020-7683(01)00260-8

Th. Seelig, E. Van der Giessen, “Localized plastic deformation in ternary polymer blends”, Int. J. Sol. Struct., Vol. 39,No. 13-14, pp. 3505-3522, 2002 DOI: https://doi.org/10.1016/S0020-7683(02)00161-0

P. J. Sanchez, A. E. Huespe, J. Oliver, “On some topics for the numerical simulation of ductile fracture”, Int. J. Plast., Vol. 24, No. 6, pp. 1008-1038, 2008 DOI: https://doi.org/10.1016/j.ijplas.2007.08.004

D. Heikens, S. D. Sjoerdsma, W. J. Coumans, “A mathematical relation between volume strain, elongational strain and stress in homogenous deformation”, J. Mater. Sci., Vol. 16, No. 2, 429-432, 1981 DOI: https://doi.org/10.1007/BF00738633

P. W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw- Hill, New York, 1952

Downloads

How to Cite

[1]
Selini, N., Elmeguenni, M. and Benguediab, M. 2013. Effect of the Triaxiality in Plane Stress Conditions. Triaxiality Effect in a PVC Material. Engineering, Technology & Applied Science Research. 3, 1 (Feb. 2013), 373–380. DOI:https://doi.org/10.48084/etasr.302.

Metrics

Abstract Views: 1179
PDF Downloads: 994

Metrics Information

Most read articles by the same author(s)