Analysis of Void Growth and Coalescence in Porous Polymer Materials. Coalescence in Polymer Materials

Authors

  • S. A. Reffas Djillali Liabes University of Sidi Bel Abbes, Algeria
  • M. Elmeguenni Department of Engineering Mechanics, Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria
  • M. Benguediab Department of Engineering Mechanics, Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes, Algeria

Abstract

The use of polymeric materials in engineering applications is growing more and more all over the world. This issue requests new methodologies of analysis in order to assess the material’s capability to withstand complex loads. The use of polyacetal in engineering applications has increased rapidly in the last decade. In order to evaluate the behavior, the damage and coalescence of this type of polymer, a numerical method based on damage which occurs following several stages (nucleation of cavities, their growth and coalescence in more advanced stages of deformation) is proposed in this work. A particular attention is given on the stress-strain and the volumetric strain evolution under different triaxiality and for three initial void shapes. Its application to polyacetal allows approving this approach for technical polymers. Finally, this method allow us to compare the obtained results of basic calculations at different triaxiality and to discuss their possible influence on the initial size and the geometrical shape of the porosity on the material failure.

Keywords:

void growth, Coalescence, representative elementary volume( RVE), ductile, Polyoxymethylene (POM), acetal

Downloads

Download data is not yet available.

References

A. A. Benzerga, J. Besson, A. Pineau, “Coalescence-controlled anisotropic ductile fracture”, Journal of Engineering Materials and Technology, Vol. 121, No. 2, pp. 221-229, 1999 DOI: https://doi.org/10.1115/1.2812369

A. A. Benzerga, “Micromechanics of coalescence in ductile fracture”, Journal of the Mechanics and Physics of Solids, Vol. 50, No. 6, pp. 1331-1362, 2002 DOI: https://doi.org/10.1016/S0022-5096(01)00125-9

A. A. Benzerga, J. Besson, A. Pineau, “Anisotropic ductile fracture. Part I: experiments”, Acta Materialia, Vol. 52, No. 15, pp. 4623-4638, 2004 DOI: https://doi.org/10.1016/j.actamat.2004.06.020

A. A. Benzerga, J. Besson, A. Pineau, “Anisotropic ductile fracture. Part II: theory”, Acta Materialia, Vol. 52, No. 15, pp. 4639-4650, 2004 DOI: https://doi.org/10.1016/j.actamat.2004.06.019

A. A. Benzerga, D. Surovik, S. M. Keralavarma, “On the path-dependence of the fracture locus in ductile materials–Analysis”, International Journal of Plasticity, Vol. 37, pp. 157-70, 2012 DOI: https://doi.org/10.1016/j.ijplas.2012.05.003

X. Gao, T. Wang, J. Kim, “On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution”, International Journal of Solids and Structures, Vol. 42, No. 18-19, pp. 5097-5117, 2005 DOI: https://doi.org/10.1016/j.ijsolstr.2005.02.028

S. M. Keralavarma, A. A. Benzerga, “A constitutive model for plastically anisotropic solids with non-spherical voids”, Journal of the Mechanics and Physics of Solids, Vol. 58, No. 6, pp. 874-901, 2010 DOI: https://doi.org/10.1016/j.jmps.2010.03.007

S. M. Keralavarma, S. Hoelscher, A. A. Benzerga, “Void growth and coalescence in anisotropic plastic solids”, International Journal of Solids and Structures, Vol. 48, No. 11-12, pp. 1696-1710, 2011 DOI: https://doi.org/10.1016/j.ijsolstr.2011.02.020

A. E. Huespe, A. Needleman, J. Oliver, P. J. Sánchez, “A finite thickness band method for ductile fracture analysis”, International Journal of Plasticity, Vol. 25, No. 12, pp. 2349-2365, 2009 DOI: https://doi.org/10.1016/j.ijplas.2009.03.005

A. E. Huespe, A. Needleman, J. Oliver, P. J. Sánchez, “A finite strain, finite band method for modeling ductile fracture”, International Journal of Plasticity, Vol. 28, No. 1, pp. 53-69, 2012 DOI: https://doi.org/10.1016/j.ijplas.2011.05.010

Y. Li, D. G. Karr, “Prediction of ductile fracture in tension by bifurcation, localization, and imperfection analyses”, International Journal of Plasticity, Vol. 25, No. 6, pp. 1128-1153, 2009 DOI: https://doi.org/10.1016/j.ijplas.2008.07.001

Y. Li, T. Wierzbicki, “Prediction of plane strain fracture of AHSS sheets with post-initiation softening”, International Journal of Solids and Structures, Vol. 47, No. 17, pp. 2316-2327, 2010 DOI: https://doi.org/10.1016/j.ijsolstr.2010.04.028

H. Li, M. W. Fu, J. Lu, H. Yang, “Ductile fracture: Experiments and computations”, International Journal of Plasticity, Vol. 27, No. 2, pp. 147-180. 2011 DOI: https://doi.org/10.1016/j.ijplas.2010.04.001

H. Stumpf, J. Makowski, K. Hackl, “Dynamical evolution of fracture process region in ductile materials”, International Journal of Plasticity, Vol. 25, N o. 5, pp. 995-1010, 2009 DOI: https://doi.org/10.1016/j.ijplas.2008.04.004

A. S. Khan, H. Liu, “A new approach for ductile fracture prediction on Al 2024-T351 alloy”, International Journal of Plasticity, Vol. 35, pp. 1-12, 2012 DOI: https://doi.org/10.1016/j.ijplas.2012.01.003

L. Lecarme, C. Tekoglu, T. Pardoen, “Void growth and coalescence in ductile solids with stage III and stage IV strain hardening”, International Journal of Plasticity, Vol. 27, No. 8, pp. 1203-1223, 2011 DOI: https://doi.org/10.1016/j.ijplas.2011.01.004

M. Dunand, D. Mohr, “Hybrid experimental–numerical analysis of basic ductile fracture experiments for sheet metals”, International Journal of Solids and Structures, Vol. 47, No. 9, pp. 1130-1143, 2010 DOI: https://doi.org/10.1016/j.ijsolstr.2009.12.011

M. Dunand, D. Mohr, “Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading”, Engineering Fracture Mechanics, Vol. 78, No. 17, pp. 2919-2934, 2011 DOI: https://doi.org/10.1016/j.engfracmech.2011.08.008

S. M. Graham, T. Zhang, X. Gao, M. Hayden, “Development of a combined tension–torsion experiment for calibration of ductile fracture models under conditions of low triaxiality”, International Journal of Mechanical Sciences, Vol. 54, No. 1, pp. 172-181, 2012 DOI: https://doi.org/10.1016/j.ijmecsci.2011.10.007

A. L. Gurson, “Continuum theory of ductile rupture by void nucleation and growth: Part-I–Yield criteria and flow rules for porous ductile media”, Journal of Engineering Materials and Technology, Vol. 99, No. 1, pp. 2-15, 1977 DOI: https://doi.org/10.1115/1.3443401

S. Yi, W. Duo, “A lower bound approach to the yield loci of porous materials”, Acta Mechanica Sinica, Vol. 5, No. 3, pp. 237-243, 1989 DOI: https://doi.org/10.1007/BF02487985

A. C. Steenbrink, E. Van der Giessen, P. D. Wu, “Void growth in glassy polymers”, Journal of the Mechanics and Physics of Solids, Vol. 45, No. 3, pp. 405-437, 1997 DOI: https://doi.org/10.1016/S0022-5096(96)00093-2

H. -Y. Jeong, “A new yield function and a hydrostatic stress-controlled void nucleation model for porous solids with pressure-sensitive matrices”, International Journal of Solids and Structures, Vol. 39, No. 5, pp. 1385-1403, 2002 DOI: https://doi.org/10.1016/S0020-7683(01)00260-8

P. J. Sànchez, A. E. Huespe, J. Oliver, “On some topics for the numerical simulation of ductile fracture”, International Journal of Plasticity, Vol. 24, No. 6, pp. 1008-1038, 2008 DOI: https://doi.org/10.1016/j.ijplas.2007.08.004

L. Cheng, T. F. Guo, “Void interaction and coalescence in polymeric materials”, International Journal of Solids and Structures, Vol. 44, No. 6, pp. 1787-1808, 2007 DOI: https://doi.org/10.1016/j.ijsolstr.2006.08.007

S. G. Bardenhagen, M. G. Stout, G. T. Gray, “Three-dimensional, finite deformation, viscoplastic constitutive models for polymeric materials”, Mechanics of Materials, Vol. 25, No. 4, pp. 235-253, 1997 DOI: https://doi.org/10.1016/S0167-6636(97)00007-0

T. A. Tervoort, R. J. M. Smit, W. A. M. Brekelmans, L. E. Govaert, “A constitutive equation for the elasto-viscoplastic deformation of glassy polymers”, Mechanics of Time-Dependent Materials, Vol. 1, pp. 269-291, 1997 DOI: https://doi.org/10.1023/A:1009720708029

J. M. Gloaguen, J. M. Lefebvre, “Plastic deformation behaviour of thermoplastic/clay nanocomposites”, Polymer, Vol. 42, No. 13, pp. 5841-5847, 2001 DOI: https://doi.org/10.1016/S0032-3861(00)00901-0

F. Zaïri, M. Naït-Abdelaziz, K. Woznica, J. M. Gloaguen, “Constitutive equations for the viscoplastic-damage behaviour of a rubber-modified polymer”, European Journal of Mechanics-A/Solids, Vol. 24, No. 1, pp. 169-182, 2005 DOI: https://doi.org/10.1016/j.euromechsol.2004.11.003

F. Zaïri, B. Aour, J. M. Gloaguen, M. Naït-Abdelaziz, J. M. Lefebvre, “Numerical modeling of elastic–viscoplastic equal channel angular extrusion process of a polymer”, Computational Materials Science, Vol. 38, No. 1, pp. 202-216, 2006 DOI: https://doi.org/10.1016/j.commatsci.2006.02.008

F. Zaïri, M. Naït-Abdelaziz, K. Woznica, J. M. Gloaguen, “Elasto-viscoplastic constitutive equations for the description of glassy polymers behavior at constant strain rate”, Journal of Engineering Materials and Technology, Vol. 129, No. 1, pp. 29-35, 2007 DOI: https://doi.org/10.1115/1.2400256

F. Zaïri, M. Naït-Abdelaziz, J. M. Gloaguen, J. M. Lefebvre, “Modelling of the elasto-viscoplastic damage behaviour of glassy polymers”, International Journal of Plasticity, Vol. 24, No. 6, pp. 945-965, 2008 DOI: https://doi.org/10.1016/j.ijplas.2007.08.001

F. Zaïri, M. Naït-Abdelaziz, J. M. Gloaguen, J. M. Lefebvre, “A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation”, International Journal of Plasticity, Vol. 27, No. 1, pp. 25-51, 2011 DOI: https://doi.org/10.1016/j.ijplas.2010.03.007

A. D. Mulliken, M. C. Boyce, “Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates”, International Journal of Solids and Structures, Vol. 43, No. 5, pp. 1331-1356, 2006 DOI: https://doi.org/10.1016/j.ijsolstr.2005.04.016

J. Richeton, S. Ahzi, K. S. Vecchio, F. C. Jiang, A. Makradi, “Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates”, International Journal of Solids and Structures, Vol. 44, No. 24, pp. 7938-7954, 2007 DOI: https://doi.org/10.1016/j.ijsolstr.2007.05.018

M. Elmeguenni, “Effet de la triaxialité sur le comportement et la rupture du polyéthylène haute densité: approches expérimentales et numériques”, Thesis, Université Lille1, 2010

V. Tvergaard, “Influence of voids on shear bands instabilities under plane strain conditions”, International Journal of Fracture, Vol. 17, No. 4, pp. 389–407, 1981 DOI: https://doi.org/10.1007/BF00036191

V. Tvergaard, “On localization in ductile materials containing spherical voids”, International Journal of Fracture, Vol. 18, No. 4, pp. 237–252, 1982

V. Tvergaard, A. Needleman, “Analysis of the cup-cone fracture in a round tensile bar”, Acta Metallurgica, Vol. 32, No. 1, pp. 157–169, 1984 DOI: https://doi.org/10.1016/0001-6160(84)90213-X

Z. L. Zhang, C. Thaulow, J. Ødegård, “A Complete Gurson Model Based Approach for Ductile Fracture”, Engineering Fracture Mechanics, Vol. 67, No. 2, pp. 155-168, 2000 DOI: https://doi.org/10.1016/S0013-7944(00)00055-2

J. Koplik, A. Needleman, “Void growth and coalescence in porous plastic solids”, International Journal of Solids and Structures, Vol. 24, No. 8, pp. 835-853, 1988 DOI: https://doi.org/10.1016/0020-7683(88)90051-0

R. Becker, R. E. Smelser, O. Richmond, E. J. Appleby, “The effect of void schape on void growth and ductility in axisymmetric tension tests”, Metallurgical Transactions A, Vol. 20, No. 5, pp. 853-861, 1989 DOI: https://doi.org/10.1007/BF02651652

R. C. Lin, D. Steglich, W. Brocks, J. Betten, “Performing RVE calculations under constant stress triaxiality for monotonous and cyclic loading”, International Journal for Numerical Methods in Engineering, Vol. 66, No. 8, pp. 1331-1360, 2006 DOI: https://doi.org/10.1002/nme.1600

M. Gologanu, J. B. Leblond, G. Perrin, J. Devaux, “Theoretical models for void coalescence in porous ductile solids. II. Coalescence in columns”, International Journal of Solids and Structures, Vol. 38, No. 32-33, pp. 5595-5604, 2001 DOI: https://doi.org/10.1016/S0020-7683(00)00355-3

T. Pardoen, J. W. Hutchinson, “An extended model for void growth and coalescence”, Journal of the Mechanics and Physics of Solids, Vol. 48, No. 12, pp. 2467–2512, 2000 DOI: https://doi.org/10.1016/S0022-5096(00)00019-3

K. Siruguet, J. B. Leblond, “Effect of void locking by inclusions upon the plastic behavior of parous ductile solids-part II: theoretical modeling and numerical study of void coalescence”, International Journal of Plasticity, Vol. 20, No. 2, pp. 255-268, 2004 DOI: https://doi.org/10.1016/S0749-6419(03)00019-6

W. Brocks, D. Z. Sun, A. Hönig, "Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic materials", Vol. 11, No. 8, pp. 971-989, 1995 DOI: https://doi.org/10.1016/S0749-6419(95)00039-9

Downloads

How to Cite

[1]
Reffas, S.A., Elmeguenni, M. and Benguediab, M. 2013. Analysis of Void Growth and Coalescence in Porous Polymer Materials. Coalescence in Polymer Materials. Engineering, Technology & Applied Science Research. 3, 3 (Jun. 2013), 452–460. DOI:https://doi.org/10.48084/etasr.330.

Metrics

Abstract Views: 1202
PDF Downloads: 334

Metrics Information

Most read articles by the same author(s)