Experimental Study of Electric and Dielectric Behavior of PVC Composites

L. Madani, K. S. Belkhir, S. Belkhiat


Polyvinyl chloride (PVC) is usually used as insulation in electrical engineering, mainly as cable insulation sheaths. A method for improving PVC’s dielectric properties, reducing the effects of UV aging, is the use of PVC films doped in alumina and titanium dioxide. This research investigated the influence of alumina and titanium dioxide (Al2O3/TiO2) on the dielectric properties of PVC. Four PVC samples were examined using an RLC impedance analyzer. Fourier Transform Infrared (FTIR) spectroscopy was utilized on the sample’s surfaces, exploring the chemical stability of the tested materials. In addition, the volume resistivity and average breakdown voltage of each sample were examined. Doping Al2O3/TiO2 into PVC improved its dielectric properties and volume resistivity while adding more ceramic decreased volume resistivity. Furthermore, the addition of Al2O3/TiO2 caused a significant enhancement in voltage breakdown strength.


PVC; composite; alumina; titanium dioxide; Al2O3/TiO2 doped PVC; breakdown voltage

Full Text:



M. Danikas, Α. Bairaktari, R. Sarathi, A. B. B. A. Ghani, “A review of two nanocomposite insulating materials models: lewis’ contribution in the development of the models, their differences, their similarities and future challenges”, Engineering, Technology & Applied Science Research, Vol. 4, No. 3, pp. 636-643, 2014

N. Zaman, S. Ahmed, M. Sanaullah, A. U. Rehman, A. R. Shar, M. R. Luhur, “Fabrication and characterization of organoclay reinforced polyester based hybrid nanocomposite materials”, Engineering, Technology & Applied Science Research, Vol. 8, No. 3, pp. 3038-3040, 2018

D. Y. Godovsky, “Device applications of polymer-nanocomposites”, in: Advances in Polymer Science, Vol. 153, Springer, 2000

P. M. Ajayan, L. S. Schadler, P. V. Braun, Nanocomposite science and technology, John Wiley & Sons, 2006

F. A. Kasim, M. A. Mahdi, J. J. Hassan, S. K. J. Al-Ani, S. J. Kasim, “Preparation and optical properties of cds/epoxy nanocomposites”, International Journal Nanoelectronics and Materials, Vol. 5, pp. 57-66, 2012

S. Tachikawa, A. Noguchi, T. Tsuge, M. Hara, O. Odawara, H. Wada, “Optical properties of ZnO nanoparticles capped with polymers”, Materials, Vol. 4, No. 6, pp. 1132-1143, 2011

P. Obreja, D. Cristea, M. Purica, R. Gavrila, F. Comanescu, “Polymers doped with metal oxide nanoparticles with controlled refractive index”, Polimery, Vol. 52, No. 9, pp. 679-685, 2007

E. D. Owen, Degradation and stabilization of PVC, Elsevier, 1984

J. A. Mergos, M. D. Athanassopoulou, T. G. Argyropoulos, C. T. Dervos, P. Vassiliou, “The effect of accelerated UV-ageing on the dielectric properties of PVC, PTFE and HDPE”, 10th IEEE International Conference on Solid Dielectrics, Potsdam, Germany, July 4-9, 2010

C. Neusel, G. A. Schneider, “Size-dependence of the dielectric breakdown strength from nano- to millimeter scale”, Journal of the Mechanics and Physics of Solids, Vol. 63, pp. 201-213, 2014

Y. Gui, S. Li, J. Xu, C. Li, “Study on TiO2-doped ZnO thick film gas sensors enhanced by UV light at room temperature”, Microelectronics Journal, Vol. 39, No. 9, pp. 1120-1125, 2008

X. Ning, Z. Xiang, Z. Peng, S. Zhang, S. Chen, “Effect of UV ageing on space charge characteristics of epoxy resin and its nanocomposites”, IEEE International Conference on Solid Dielectrics, Bologna, Italy, June 30-July 4, 2013

L. Xuan, G. Han, D. Wang, W. Cheng, X. Gao, F. Chen, Q. Li, “Effect of surface-modified TiO2 nanoparticles on the anti-ultraviolet aging performance of foamed wheat straw fiber/polypropylene composites”, Materials, Vol. 10, No. 5, pp. 2-13, 2017

Z. Li, K. Okamoto, Y. Ohki, T. Tanaka, “Effects of nano-filler addition on partial discharge resistance and dielectric breakdown strength of micro-Al2O3Epoxy composite”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, No. 3, pp. 653-661, 2010

V. Dureault, B. Gosse, J. Gatellet, F. Boileau, “UV-induced ageing of epoxy resins: surface conductivity evolution related to chemical modification - application to ageing evaluation of insulating materials”, IEEE Conference on Electrical Insulation and Dielectric Phenomena, Arlinton, USA, October 23-26, 1994

B. Ranby, “Basic reactions in the photodegradation of some important polymers”, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, Vol. 30, No. 9-10, pp. 583-594, 1993

International Electrotechnical Commission, Common test methods for insulating and sheathing materials of electric cables, IEC 60811-3-2, IEC, 1993

International Electrotechnical Commission, Characteristics of electric infra-red emitters for industrial heating, IEC 60240-1, IEC, 1992

P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H. J. Ploehn, H. C. Zur Loye, “Polymer composite and nanocomposite dielectric materials for pulse power energy storage”, Materials, Vol. 2, No. 4, pp. 1697-1733, 2009

C. Zhang, J. F. Sheng, C. A. Ma, M. Sumita, “Electrical and damping behaviors of CPE/BaTiO3/VGCF composites”, Materials Letters, Vol. 59, No. 28, pp. 3648-3651, 2005

M. Pandey, G. M. Joshi, A. Mukherjee, P Thomas, “Electrical properties and thermal degradation of poly(vinyl chloride)/polyvinylidene fluoride/ZnO polymer nanocomposites”, Polymer International, Vol. 65, pp. 1098-1106, 2016

C. S. Ramya, S. Selvasekarapandian, G. Hirankumar, T. Savitha, P. C. Angelo, “Investigation on dielectric relaxations of PVP–NH4SCN polymer electrolyte”, Journal of Non-Crystalline Solids, Vol. 354, No. 14, pp. 1494–1502, 2008

A. Berrag, S. Belkhiat, L. Madani, “Investigation of dielectric behavior of the PVC/BaTiO3 composite in low-frequencies”, International Journal of Modern Physics B, Vol. 32, No. 9, 2018

A. Patsidis, G. C. Psarras, “Dielectric behaviour and functionality of polymer matrix-ceramic BaTiO3 composites”, Express Polymer Letters, Vol. 2, No. 10, pp. 718–726, 2008

B. Mailhot, S. Morlat-Therias, P. O. Bussiere, L. Le Pluart, J. Duchet, H. Sautereau, J. F. Gerard , J. L. Gardette, “Photoageing behaviour of epoxy nanocomposites: comparison between spherical and lamellar nanofillers”, Polymer Degradation and Stability, Vol. 93, No. 10, pp. 1786-1792, 2008

K. Faghihi, M. Soleimani, S. Nezami, M. Shabanian, “Thermal and optical properties of new poly(amide-imide)-nanocomposite reinforced by layer silicate based on chiral n-trimellitylimido-L-valine”, Macedonian Journal of Chemistry and Chemical Engineering, Vol. 31, No. 1, pp. 79–87, 2012

S. A. Mansour, R. A. Elsad, M. A. Izzularab, “Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles”, Journal of Polymer Research, Vol. 23, No. 5, 2016

A. Mohany, V. K. Srivastava, “Dielectric breakdown performance of alumina/epoxy resin nanocomposite under high voltage application”, Materials and Design, Vol. 47, pp. 711-716, 2013

F. Tian, Q. Lei, X. Wang, Y. Wang, “Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, No. 3, pp. 763-769, 2012

K. Theodosiou, I. Vitellas, I. Gialas, D. P. Agoris, “Polymer films degradation and breakdown in high voltage AC fields”, Journal Of Electrical Engineering, Vol. 55, No. 9-10, pp. 225–231, 2004

L. Shengtao,, Z. Tuo, H. Qifeng, L. Weiwei, N. Fengyan, L. Jianying, “Improvement of surface flashover performance of Al2O3 ceramics in vacuum by adopting A-B-A insulation system”, Plasma Science and Technology, Vol. 13, No. 2, pp. 235-241, 2011

H. Li, G. Liu, B. Liu, W. Chen, S. Chen, “Dielectric properties of polyimide/Al2O3 hybrids synthesized by in-situ polymerization”, Materials Letters, Vol. 61, No. 7, pp. 1507–1511, 2007

eISSN: 1792-8036     pISSN: 2241-4487