MgO Effect on The Dielectric Properties of BaTiO3

S. Boumous, S. Belkhiat, F. Kharchouche

Abstract


The dielectric properties of barium titanate as functions of the MgO addition in various rates are investigated in this paper. The ceramics were prepared by conventional methods. X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry, were applied to determine the structure and microstructure of the studied material. Phases MgO, TiO and TiO2, have been detected. Decrease of the grain size with increasing MgO content was observed. Measurements of εr, tgδ and resistance have been performed at temperatures ranging from 300C to 4000C. The electric permittivity (εr) showed a considerable decrease with increasing MgO concentration. Additionally, for low MgO concentration (10£mol.% MgO) a shift of the dielectric loss peak (tgδm) towards low temperatures was observed. When the MgO content was ≥15mol.% MgO the tgδm moved into higher temperatures. The obtained results indicate that the substitution of Mg2+ ions in B-site ions (Ti4+) had a significant influence on the values of εr, tgδ and the resistance increase of the ceramics.


Keywords


BaTiO3; MgO-doped BaTiO3; thermistors PTC; dielectric properties; electric permittivity

Full Text:

PDF

References


H. R. Rukmini, R. N. P. Choudary, V. V. Rao, “Structural and dielectric properties of Pb0.91(La,K)0.09(Zr0.65Ti0.35)0.9775O3 ceramics”, Journal of Materials Science, Vol. 34, No. 19, pp. 4815-4819, 1999

F. Kharchouche, S. Belkhiat, D. E. C. Belkhiat, “Non-linear coefficient of BaTiO3-doped ZnO varistor”, IET Science, Measurement & Technology, Vol. 7, No. 6, pp. 326-333, 2013

L. Madani, S. Belkhiat, A. Berrag, S. Nemdili, “Investigation of dielectric behavior of water and thermally aged of XLPE/BaTiO3 composites in the low-frequency range”, International Journal of Modern Physics B, Vol. 29, No. 27, pp. 1550186-155191, 2015

M. N. Vijatovic, J. D. Bobic, B. D. Stojanovic, “History and Challenges of Barium Titanate: Part I”, Science of Sintering, Vol. 40, No. 2, pp. 155-165, 2008

D. Y. Lu, X. Y. Sun, B. Liu, J. L. Zhang, T. Ogata, “Structural and dielectric properties, electron paramagnetic resonance, and defect chemistry of Pr-doped BaTiO3 ceramics”, Journal of Alloys and Compounds, Vol. 615, pp. 25-34, 2014

X. Huang, H. Liu, H. Hao, S. Zhang, Y. Sun, W. Zhang, L. Zhang, M. Cao, “Microstructure effect on dielectric Properties of MgO-doped BaTiO3–BiYO3 ceramics”, Ceramics International, Vol. 41, No. 6, pp. 7489-7495, 2015

S. D. Chavan, S. G. Chavan, D. J. Salunkhe, “Dielectric and Ferroelectric Properties of (Ba0.95Ca0.05) (Ti0.90Zr0.1)O3 Composition”, Internal Journal of Multidisciplinary Research and Development, Vol. 1, No. 7, pp. 114-116, 2014

M. J. Wang, H. Yang, Q. L. Zhang, Z. S. Lin, Z. S. Zhang, D. Yun, L. Hu, “Microstructure and dielectric properties of BaTiO3 ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application”, Materials Research Bulletin, Vol. 60, pp. 485-491, 2014

M. Aghayan, A. Khorsand Zak, M. Behdani, A. Manaf Hashim, “Sol–gel combustion synthesis of Zr-doped BaTiO3 nanopowders and ceramics: Dielectric and ferroelectric studies”, Ceramics International Vol. 40, pp. 16141-16144, 2014

D. Ma, X. Chen, G. Huang, J. Chen, H. Zhou, L. Fang, “Temperature stability, structural evolution and dielectric properties of BaTiO3–Bi(Mg2/3Ta1/3)O3 perovskite ceramics”, Ceramics International, Vol. 41, No. 5, pp. 7157-7161, 2015

J. J. Zhao, Y. P. Pu, P. P. Zhang, L. Cheng, S. J. Li, L. Feng, “Effect of Na2Ti6O13 addition on the microstructure and PTCR characteristics of Ba0.94(Bi0.5K0.5)0.06TiO3 ceramics”, Ceramics International Vol. 41, No. 3, pp. 4735-4741, 2015

M. B. Smith, K. Page, T. Siegrist, P. L. Redmond, E. C. Walter, R. Seshadri, L. E. Brus, M. L. Steigerwald, “Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3”, Journal of the American Chemical Society, Vol. 130, pp. 6955-6963, 2008

Y. L. Chen, S. F. Yang, “PTCR effect in donor doped barium titanate: review of compositions, microstructures, processing and properties”, Advances in Applied Ceramics, Vol. 110, No. 5, pp. 257-269, 2011

S. Urek, M. Drofenik, “PTCR behaviour of highly donor doped BaTiO3”, Journal of the European Ceramic Society, Vol. 19, No. 6, pp. 913-916, 1999

J. Daniels, K. H. Hardtl, R. Wernicke, “PTC effect of barium titanate”, Philips Technical Review, Vol. 38, No. 3, pp. 73-82, 1979

S. Park, M. H. Yang, Y. H. Han, “Effects of MgO coating on the sintering behavior and dielectric properties of BaTiO3”, Materials Chemistry and Physics, Vol. 104, No. 2, 261-266, 2007

M. Ma, Y. Wan, Y. Lu, W. Wu, Y. Li, “Effect of ball mill method on microstructure and electrical properties of BaTiO3 based PTCR ceramics”, Ceramics International, Vol. 41, pp. S804-S808, 2015

G. D. Silveira, M. F. S. Alves, L. F. Cotica, R. A. M. Gota, W. J. Nascimento, D. Garcia, J. A. Eiras, L. A. Santos, “Dielectric investigations in nanostructured tetragonal BaTiO3 ceramics”, Materials Research Bulletin, Vol. 48, No. 5, pp. 1772-1777, 2013

J. Miao, Z. Zhang Z. Liu, Y. Li, “Investigation on the dielectric properties of Mg-doped (Ba0.95Ca0.05)(Ti0.85Zr0.15)O3 ceramics”, Ceramics International, Vol. 41, S487-S491, 2015

L. Li, M. Wang, Y. Liu, J. Chen, N. Zhang, “Decisive role of MgO addition in the ultra-broad temperature stability of multicomponent BaTiO3-based ceramics”, Ceramics International, Vol. 40, No. 1, pp. 1105-1110, 2014

W. Cai, C. L. Fu, J. C. Gao, C. X. Zhao, “Dielectric properties and microstructure of Mg doped barium titanate ceramics”, Advances in Applied Ceramics, Vol. 110, No. 3, pp. 181-185, 2011

C. Vittayakorn, D. Bunjong, R. Muanghlua, N. Vittayakorn, “Characterization and properties of BaTiO3/MgO nanocomposite ceramics”, Journal of Ceramic Processing Research, Vol. 12, No. 5, pp. 493-495, 2011

J. S. Park, Y. H. Han, “Effects of MgO coating on microstructure and dielectric properties of BaTiO3”, Journal of the European Ceramic Society, Vol. 27, No. 2, pp. 1077-1082, 2007

H. Yamamoto, S. Sendai, H. Ninomiya, Electroconductive Composite Ceramics, US Patent US4110260 A, 1978

J. A. Zaykoski, C. A. Martin, I. G. Talmy, G. Zoski, “Two‐Phase Ceramic Dielectrics”, in: Advances in Dielectric Materials and Electronic Devices: Proceedings of the 107th Annual Meeting of The American Ceramic Society, Baltimore, Maryland, USA 2005, Vol. 174, John Wiley & Sons, 2012

A. Al-Shahrani, S. Abboudy, “Positive temperature coefficient in Ho-doped BaTiO3 ceramics”, Journal of Physics and Chemistry of Solids, Vol. 61, No. 6, pp. 955-959, 2000

S. Rattanachan, Y. Miyashita, Y. Mutoh, “Fracture Toughness of BaTiO3-MgO Composites Sintered by Spark Plasma Sintering”, 8th International Symposium on Fracture Mechanics of Ceramics, Houston, USA, February 25-28, 2003

S. Belkhiat, F. Keraghel, “Oxygen and Carbon Effect on the Segregation Energy of Be on Cu-4at.%-Be Alloy Surface”, International Review of Physics, Vol. 1, pp. 258, 2007

S. Belkhiat, F. Keraghel, “Characterisation of Al-3.49wt%-Li Alloy Oxidised Surface Using Auger Electron Spectroscopy”, Romanian Journal of Physics, Vol. 52, No. 3-4, pp. 309-317, 2007

S. Belkhiat, F. Keraghel, “Hydrogen and Carbon Effect on Cu-4% at. Be Alloy Oxidised Surface”, available at: https://arxiv.org/ftp/arxiv/papers/1011/1011.3875.pdf

P. Simon, Synthese des Danoparticules d’Oxyde de Titanate par Pyrolyse Laser. Etude des Proprietes Optiques de la Structure Electronique, PhD Thesis, Universite Paris Sud XI, 2011 (in French)

S. Le Moal, M. Moors, J. M. Essen, C. Breinlich, C. Becker, K. Wandelt, “Structural and compositional characterization of ultrathin titanium oxide films grown on Pt3Ti (111)”, Journal of Physics: Condensed Matter, Vol. 25, No. 4, pp. 45013, 2013

B. D. Evans, M. Stapelbrock, “Fusion/fission neutron damage ratio for alumina”, Journal of Nuclear Materials, Vol. 85-86, pp. 497-502, 1979

Y. Y. Chen, M. M. Abraham, M. T. Robinson, J. B. Mitchell, R. A. Van Konynenburg, “Production of point defects in 14.8 MeV neutron -irradiated MgO”, International Conference on Radiation Effects and Tritium Technology Fusion Reactors, Gatlinburg, USA, 1975

J. Mazierska, D. Ledenyov, M. V. Jacob, J. Krupka, “Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator”, Superconductor Science and Technology, Vol. 18, No. 1, pp. 18-23, 2005

G. Liu, S. Zhang, W. Jiang, W. Cao, “Losses in Ferroelectric Materials”, Materials Science and Engineering: R: Reports, Vol. 89, pp. 1-48, 201




eISSN: 1792-8036     pISSN: 2241-4487