Improving the Impact Resistance through Annealing in PLA 3D Printed Parts

Authors

  • Dragos Gabriel Zisopol Mechanical Engineering Department, Petroleum-Gas University Ploiesti, Romania
  • Alexandra Ileana Portoaca Mechanical Engineering Department, Petroleum-Gas University Ploiesti, Romania
  • Maria Tanase Mechanical Engineering Department, Petroleum-Gas University Ploiesti, Romania
Volume: 13 | Issue: 5 | Pages: 11768-11772 | October 2023 | https://doi.org/10.48084/etasr.6281

Abstract

This study conducts an experimental exploration and thorough analysis of the influence of annealing on the impact resistance of PLA 3D-printed components. The investigation extends its scope to encompass the influence of printing parameters, specifically layer thickness and infill percentage. The research highlights that the impact resistance of annealed 3D printed PLA components is predominantly influenced by the infill percentage, with the highest impact energy observed at a full 100% infill. It is noticeable that the application of annealing post-processing heat treatment results in a remarkable, up to threefold, increase of the impact energy highlighting its potential efficacy as a viable technique for enhancing the mechanical integrity of PLA 3D printed products. Consequently, this study establishes annealing as a promising methodology, particularly for PLA 3D printing applications that encounter significant mechanical loads.

Keywords:

3D printing, FDM, PLA, annealing, Charpy test

Downloads

Download data is not yet available.

References

D. G. Zisopol, N. Ion, and A. I. Portoaca, "Comparison of the Charpy Resilience of Two 3D Printed Materials: A Study on the Impact Resistance of Plastic Parts," Engineering, Technology & Applied Science Research, vol. 13, no. 3, pp. 10781–10784, Jun. 2023.

C. B. B. Luna, D. D. Siqueira, E. M. Araújo, and R. M. R. Wellen, "Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters," MOMENTO, no. 62, pp. 1–17, Jan. 2021.

D. G. Zisopol, A. Dumitrescu, and C.N. Trifan, Ecotehnologie. Noţiuni teoretice, aplicaţii şi studii de caz. Ploiesti, Romania: Editura Universității Petrol - Gaze din Ploiești, 2010.

D.G. Zisopol and A. Dumitrescu, Ecotehnologie: Studii de caz. Ploiesti, Romania: Editura Universității Petrol-Gaze din Ploiești, 2020.

D. G. Zisopol and A. Dumitrescu, Materiale şi tehnologii primare. Aplicații practice și studii de caz. Ploiesti, Romania: Editura Universității Petrol - Gaze din Ploiești, 2005.

D. G. Zisopol, Ingineria valorii. Ploiesti, Romania: Editura Universității Petrol - Gaze din Ploiești, 2004.

D. G. Zisopol and M. J. Săvulescu, Bazele tehnologiei. Ploiesti, Romania: Editura Universității Petrol - Gaze din Ploiești, 2003.

D. G. Zisopol, Tehnologii industriale și de construcții, Aplicații practice și studii de caz. Ploiesti, Romania: Editura Universității Petrol - Gaze din Ploiești, 2003.

M. J. Săvulescu, D.G. Zisopol, and I. Nae, Bazele tehnologiei materialelor. Îndrumar de lucrări practice. Ploiești, Romania: Editura Premier Ploiești, 1997.

M. Minescu, D. G. Zisopol, Sudarea ţevilor şi fitingurilor din polietilenă de înaltă densitate. Ploiesti, Romania: Editura Universității Petrol - Gaze din Ploiești, România, 2021.

A. Diniță, A. Neacșa, A. I. Portoacă, M. Tănase, C. N. Ilinca, and I. N. Ramadan, "Additive Manufacturing Post-Processing Treatments, a Review with Emphasis on Mechanical Characteristics," Materials, vol. 16, no. 13, Jan. 2023, Art. no 4610.

K. Sathish Kumar, R. Soundararajan, G. Shanthosh, P. Saravanakumar, and M. Ratteesh, "Augmenting effect of infill density and annealing on mechanical properties of PETG and CFPETG composites fabricated by FDM," Materials Today: Proceedings, vol. 45, pp. 2186–2191, Jan. 2021.

D. G. Zisopol, A. I. Portoaca, I. Nae, and I. Ramadan, "A Comparative Analysis of the Mechanical Properties of Annealed PLA," Engineering, Technology & Applied Science Research, vol. 12, no. 4, pp. 8978–8981, Aug. 2022.

D. G. Zisopol, I. Nae, A. I. Portoaca, and I. Ramadan, "A Statistical Approach of the Flexural Strength of PLA and ABS 3D Printed Parts," Engineering, Technology & Applied Science Research, vol. 12, no. 2, pp. 8248–8252, Apr. 2022.

D. G. Zisopol, I. Nae, A. I. Portoaca, and I. Ramadan, "A Theoretical and Experimental Research on the Influence of FDM Parameters on Tensile Strength and Hardness of Parts Made of Polylactic Acid," Engineering, Technology & Applied Science Research, vol. 11, no. 4, pp. 7458–7463, Aug. 2021.

D. G. Zisopol, M. Minescu, and D. V. Iacob, "A Theoretical-Experimental Study on the Influence of FDM Parameters on the Dimensions of Cylindrical Spur Gears Made of PLA," Engineering, Technology & Applied Science Research, vol. 13, no. 2, pp. 10471–10477, Apr. 2023.

D. G. Zisopol, D. V. Iacob, and A. I. Portoaca, "A Theoretical-Experimental Study of the Influence of FDM Parameters on PLA Spur Gear Stiffness," Engineering, Technology & Applied Science Research, vol. 12, no. 5, pp. 9329–9335, Oct. 2022.

A. Portoaca, I. Nae, D. G. Zisopol, and I. Ramadan, "Studies on the influence of FFF parameters on the tensile properties of samples made of ABS," IOP Conference Series: Materials Science and Engineering, vol. 1235, no. 1, Nov. 2022, Art. no. 012008.

V. Cojocaru, D. Frunzaverde, C.-O. Miclosina, and G. Marginean, "The Influence of the Process Parameters on the Mechanical Properties of PLA Specimens Produced by Fused Filament Fabrication—A Review," Polymers, vol. 14, no. 5, Jan. 2022, Art. no. 886.

D. Frunzaverde et al., "The Influence of the Printing Temperature and the Filament Color on the Dimensional Accuracy, Tensile Strength, and Friction Performance of FFF-Printed PLA Specimens," Polymers, vol. 14, no. 10, Jan. 2022, Art. no. 1978.

D. G. Zisopol, A. I. Portoaca, and M. Tanase, "Dimensional Accuracy of 3D Printed Dog-bone Tensile Samples: A Case Study," Engineering, Technology & Applied Science Research, vol. 13, no. 4, pp. 11400–11405, Aug. 2023.

D. G. Zisopol, I. Nae, and A. I. Portoaca, "Compression Behavior of FFF Printed Parts Obtained by Varying Layer Height and Infill Percentage," Engineering, Technology & Applied Science Research, vol. 12, no. 6, pp. 9747–9751, Dec. 2022.

P. K. Mishra, P. Senthil, S. Adarsh, and M. S. Anoop, "An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts," Composites Communications, vol. 24, Apr. 2021, Art. no. 100605.

C.-F. Popa, M.-P. Mărghitaș, S.-V. Galațanu, and L. Marșavina, "Influence of thickness on the IZOD impact strength of FDM printed specimens from PLA and PETG," Procedia Structural Integrity, vol. 41, pp. 557–563, Jan. 2022.

T. Tezel, M. Ozenc, and V. Kovan, "Impact properties of 3D-printed engineering polymers," Materials Today Communications, vol. 26, Mar. 2021, Art. no. 102161.

M. A. Caminero, J. M. Chacón, I. García-Moreno, and G. P. Rodríguez, "Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling," Composites Part B: Engineering, vol. 148, pp. 93–103, Sep. 2018.

ISO/TC 61/SC 2 Technical Committee, ISO 179-1:2010. Plastics — Determination of Charpy impact properties — Part 1: Non-instrumented impact test. ISO, 2010.

Downloads

How to Cite

[1]
D. G. Zisopol, A. I. Portoaca, and M. Tanase, “Improving the Impact Resistance through Annealing in PLA 3D Printed Parts”, Eng. Technol. Appl. Sci. Res., vol. 13, no. 5, pp. 11768–11772, Oct. 2023.

Metrics

Abstract Views: 569
PDF Downloads: 274

Metrics Information

Most read articles by the same author(s)