Properties of Recycled Concrete utilizing Waste Rubber
Received: 5 April 2023 | Revised: 28 April 2023 | Accepted: 29 April 2023 | Online: 9 August 2023
Corresponding author: Medhat M. Helal
Abstract
Globally, billions of tires are being disposed of, representing a natural danger. Until now, a little part of that waste is reused, and most tires are simply accumulated. The present paper studies the durability phenomena of recycled concrete with partial substitution of fine aggregate by waste rubber tires. Silica fume, fly ash, and Cement Kiln Dust (CKD) were utilized as substitutions for the binding material. The overall substitution material reached about 30% of the cement content. The long-term behavior was surveyed by methods for water retention, chloride ions penetrability at 28 and 90 days, and protection from aggressive media (sulfate) at 1, 7, 14, and 28 days. Likewise, the compressive strength of concrete samples at 7, 14, 28, and 90 days was measured. The presence of cementitious framework, CKD, silica fume, and fly ash limit the utilization of waste rubber. Substitution percentages of up to 10% rubber fraction and 30% paste framework accomplish a satisfying strength level (35 MPa). These blends also exhibit higher protection from sulphuric corrosive assault than the reference blend.
Keywords:
paste framework, rubber waste, recycled concrete, Cement Kiln Dust (CKD), durabilityDownloads
References
F. M. Z. Hossain, Md. Shahjalal, K. Islam, M. Tiznobaik, and M. S. Alam, "Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber," Construction and Building Materials, vol. 225, pp. 983–996, Nov. 2019.
E. A. H. Alwesabi, B. H. A. Bakar, I. M. H. Alshaikh, A. M. Zeyad, A. Altheeb, and H. Alghamdi, "Experimental investigation on fracture characteristics of plain and rubberized concrete containing hybrid steel-polypropylene fiber," Structures, vol. 33, pp. 4421–4432, Oct. 2021.
C. Signorini and A. Nobili, "Durability of fibre-reinforced cementitious composites (FRCC) including recycled synthetic fibres and rubber aggregates," Applications in Engineering Science, vol. 9, Mar. 2022, Art. no. 100077.
M. M. Ul Islam, J. Li, R. Roychand, M. Saberian, and F. Chen, "A comprehensive review on the application of renewable waste tire rubbers and fibers in sustainable concrete," Journal of Cleaner Production, vol. 374, Nov. 2022, Art. no. 133998.
C. Xiong, Q. Li, T. Lan, H. Li, W. Long, and F. Xing, "Sustainable use of recycled carbon fiber reinforced polymer and crumb rubber in concrete: mechanical properties and ecological evaluation," Journal of Cleaner Production, vol. 279, Jan. 2021, Art. no. 123624.
R. A. Assaggaf, M. R. Ali, S. U. Al-Dulaijan, and M. Maslehuddin, "Properties of concrete with untreated and treated crumb rubber – A review," Journal of Materials Research and Technology, vol. 11, pp. 1753–1798, Mar. 2021.
S. Dezhampanah, I. M. Nikbin, S. Charkhtab, F. Fakhimi, S. M. Bazkiaei, and R. Mohebbi, "Environmental performance and durability of concrete incorporating waste tire rubber and steel fiber subjected to acid attack," Journal of Cleaner Production, vol. 268, Sep. 2020, Art. no. 122216.
W. Li, E. D. Shumuye, T. Shiying, Z. Wang, and K. Zerfu, "Eco-friendly fibre reinforced geopolymer concrete: A critical review on the microstructure and long-term durability properties," Case Studies in Construction Materials, vol. 16, Jun. 2022, Art. no. e00894.
Y. Li, S. Zhang, R. Wang, and F. Dang, "Potential use of waste tire rubber as aggregate in cement concrete – A comprehensive review," Construction and Building Materials, vol. 225, pp. 1183–1201, Nov. 2019.
R. Alyousef, W. Ahmad, A. Ahmad, F. Aslam, P. Joyklad, and H. Alabduljabbar, "Potential use of recycled plastic and rubber aggregate in cementitious materials for sustainable construction: A review," Journal of Cleaner Production, vol. 329, Dec. 2021, Art. no. 129736.
M. F. Junaid et al., "Lightweight concrete from a perspective of sustainable reuse of waste byproducts," Construction and Building Materials, vol. 319, Feb. 2022, Art. no. 126061.
K. B. Ramkumar, P. R. Kannan Rajkumar, S. Noor Ahmmad, and M. Jegan, "A Review on Performance of Self-Compacting Concrete – Use of Mineral Admixtures and Steel Fibres with Artificial Neural Network Application," Construction and Building Materials, vol. 261, Nov. 2020, Art. no. 120215.
A. Siddika, Md. A. A. Mamun, R. Alyousef, Y. H. M. Amran, F. Aslani, and H. Alabduljabbar, "Properties and utilizations of waste tire rubber in concrete: A review," Construction and Building Materials, vol. 224, pp. 711–731, Nov. 2019.
T. M. Pham, J. Davis, N. S. Ha, E. Pournasiri, F. Shi, and H. Hao, "Experimental investigation on dynamic properties of ultra-high-performance rubberized concrete (UHPRuC)," Construction and Building Materials, vol. 307, Nov. 2021, Art. no. 125104.
M. S. Nadesan and P. Dinakar, "Structural concrete using sintered flyash lightweight aggregate: A review," Construction and Building Materials, vol. 154, pp. 928–944, Nov. 2017.
R. H. Faraj, A. F. H. Sherwani, L. H. Jafer, and D. F. Ibrahim, "Rheological behavior and fresh properties of self-compacting high strength concrete containing recycled PP particles with fly ash and silica fume blended," Journal of Building Engineering, vol. 34, Feb. 2021, Art. no. 101667.
M. Assas, "Fracture Behaviors of Polyproplene Fiber Light Weight Aggregate Concrete with Crumb Rubber," Umm Al-Qura University Journal of Engineering & Architecture, vol. 6, no. 2, pp. 15–35, May 2016.
A. Hamdi, G. Abdelaziz, and K. Z. Farhan, "Scope of reusing waste shredded tires in concrete and cementitious composite materials: A review," Journal of Building Engineering, vol. 35, Mar. 2021, Art. no. 102014.
A. S. Buller, Z. A. Tunio, F. U. R. Abro, T. Ali, and K. A. Jamali, "Influence of Coarse Aggregate Gradation on the Mechnical Properties of Concrete, Part II: No-Fines Vs. Ordinary Concrete," Engineering, Technology & Applied Science Research, vol. 9, no. 5, pp. 4623–4626, Oct. 2019.
Z. A. Tunio, B. A. Memon, N. A. Memon, N. A. Lakho, M. Oad, and A. H. Buller, "Effect of Coarse Aggregate Gradation and Water-Cement Ratio on Unit Weight and Compressive Strength of No-fines Concrete," Engineering, Technology & Applied Science Research, vol. 9, no. 1, pp. 3786–3789, Feb. 2019.
M. Oad, A. H. Buller, B. A. Memon, N. A. Memon, Z. A. Tunio, and M. A. Memon, "Effect of Water-Cement Ratio on Flexural Strength of RC Beams Made with Partial Replacement of Coarse Aggregates with Coarse Aggregates from Old Concrete," Engineering, Technology & Applied Science Research, vol. 9, no. 1, pp. 3826–3831, Feb. 2019.
Z. H. Dakhel and S. D. Mohammed, "Castellated Beams with Fiber-Reinforced Lightweight Concrete Deck Slab as a Modified Choice for Composite Steel-Concrete Beams Affected by Harmonic Load," Engineering, Technology & Applied Science Research, vol. 12, no. 4, pp. 8809–8816, Aug. 2022.
Downloads
How to Cite
License
Copyright (c) 2023 Moataz Badawi, Ayman G. Ahmed, Tarek A. Eldamaty, Medhat M. Helal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.