Numerical Simulation of Tire Reinforced Sand behind Retaining Wall Under Earthquake Excitation
Abstract
This paper studies the numerical simulations of retaining walls supporting tire reinforced sand subjected to El Centro earthquake excitation using finite element analysis. For this, four cases are studied: cantilever retaining wall supporting sand under static and dynamical excitation, and cantilever retaining wall supporting waste tire reinforced sand under static and dynamical excitation. Analytical external stability analyses of the selected retaining wall show that, for all four cases, the factors of safety for base sliding and overturning are less than default minimum values. Numerical analyses show that there are no large differences between the case of wall supporting waste tire reinforced sand and the case of wall supporting sand for static loading. Under seismic excitation, the higher value of Von Mises stress for the case of retaining wall supporting waste tire reinforced sand is 3.46 times lower compared to the case of retaining wall supporting sand. The variation of horizontal displacement (U1) and vertical displacement (U2) near the retaining wall, with depth, are also presented.
Keywords:
waste tire, sand, retaining wall, earthquake, simulationDownloads
References
C. Rothfuss, C. Y. Cha, “Utilization of a scrap tire-waste oil derived carbonous residue as an asphalt modifier”, Polymer Recycling, Vol. 2, No. 3, pp. 201–212, 1996
C. Y. Wang, J. H. Cheng, H. P. Shih, J. W. Chang, “Ring columns as pier scour countermeasures”, International Journal of Sediment Research, Vol. 26, No. 3, pp. 353-363, 2011 DOI: https://doi.org/10.1016/S1001-6279(11)60099-1
H. Trouzine, A. Asroun, N. Asroun, F. Belabdelouahab, N. T. Long, “Problématique des pneus usés en Algérie”, Nature & Technologie, Vol. 5, pp. 28-35, 2011 [in French]
N. T. Long, Le Pneusol: Recherches-Réalisations-Perspectives, Thèse de doctorat du LCPC, INSA Lyon, 1993 [in French]
M. R. Hausmann, “Slope remediation”, Proceedings of the Stability and Performance of Slopes and Embankments Conference, ASCE Geotechnical Special Publication, Vol. 2, pp. 1274–1317, 1990
V. K. Garga, V. O’Shaughnessy, “Tire-reinforced earthfill. Part 1: Construction of a test fill, performance, and retaining wall design”, Canadian Geotechnical Journal, Vol. 37, No. 1, pp. 75–96, 2000 DOI: https://doi.org/10.1139/t99-084
V. O’Shaughnessy, V. K. Garga. “Tire-reinforced earthfill. Part 2: Pull-out behaviour and reinforced slope design”, Canadian Geotechnical Journal, Vol. 37, No. 1, pp. 97–116, 2000 DOI: https://doi.org/10.1139/t99-085
WYMCC, Reuse of worn tyres in civil engineering construction, Internal Report. West Yorkshire Metropolitan County Council, 1977
N. B. Romdhane, R. Nasri, M. Chaieb, N. T. Long, “Comportement dynamique du pneusol, Etude sur modèle reduit tridimensionnel, Essai sur table vibrante, Actes des 4eme Congres National AFPS, Saint-Rémy lés Chevreuse, France, 1996 [In French]
Y. Guillard, N.T. Long, P. Ursat, J. C. Valleux, “Pneusol : Essais de vibrations, Actes des 2eme Congres National AFPS, France, 1989 [In French]
S. L. Kramer, Geotechnical earthquake engineering, Englewood Cliffs, NJ: Prentice-Hall 1996
B. M. Basha, S. G. L. Babu, “Reliability assessment of internal stability of reinforced soil structures: A pseudo-dynamic approach”, Soil Dynamics and Earthquake Engineering, Vol. 30, No. 5, pp. 336-353, 2010 DOI: https://doi.org/10.1016/j.soildyn.2009.12.007
D. Choudhury, S.M. Ahmad, “External stability of waterfront reinforced soil structures under seismic conditions using a pseudo-static approach”, Geosynthetics International, Vol. 16, No.1, pp. 1–10, 2009 DOI: https://doi.org/10.1680/gein.2009.16.1.1
R. S. Steedman, X. Zeng, “The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall”, Geotechnique, Vol. 40, No. 1, pp. 103–112, 1990 DOI: https://doi.org/10.1680/geot.1990.40.1.103
A. K. Chopra, Dynamics of structures theory and applications to Earthquake Engineering, University of California at Berkeley, Prentice-Hall, 1995
H. B. Seed, R. V. Whitman, “Design of earth retaining structures for dynamic loads", ASCE Specialty Conference on Lateral Stresses in the Ground and Design of Earth Retaining Structures, pp. 103-147, USA, 1970
ABAQUS User's Examples and Theory Manual, Version 5.7. Hibbitt, Karlsson & Sorensen Inc., 1998
J. S. Sun, K. H. Lee, H. P. Lee, “Comparison of implicit and explicit finite element methods for dynamic problems”, Journal of Materials Processing Technology, Vol. 105, No. 1-2, pp. 110-118, 2000 DOI: https://doi.org/10.1016/S0924-0136(00)00580-X
N. Rebelo, J. C. Nagtegaal, L. M. Taylor, R. Passmann, “Comparison of implicit and explicit finite element methods in the simulation of metal forming processes”, NUMINFORM 92, International Conference on Numerical Methods in Industrial Forming Processes, pp. 99-108, 1992
Hibbitt, Karlsson & Sorensen Inc., “Application of implicit and explicit finite element techniques to metal forming”, Journal of Material Process Technology. Vol. 45, pp. 649-656, 1994 DOI: https://doi.org/10.1016/0924-0136(94)90413-8
T. J. R. Hughes, The finite element method – linear static and dynamic element analysis, Englewood Cliffs, (NJ): Prentice-Hall, 1987
T. Belytschko, W. K. Liu, B. Moran, Nonlinear finite element for continua and structures, Chichester: John Wiley & Sons Ltd, 2000
L. Siad, M. Ould Ouali, A. Benabbes, “Comparison of explicit and implicit finite element simulations of void growth and coalescence in porous ductile materials”, Materials and Design, Vol. 29, No. 2, pp. 319–329, 2008 DOI: https://doi.org/10.1016/j.matdes.2007.02.003
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.