Assessment of Wind Power Potential Based on Raleigh Distribution Model: An Experimental Investigation for Coastal Zone

B. Memon, M. H. Baloch, A. H. Memon, S. H. Qazi, R. Haider, D. Ishak


When compared with other renewable energy resources (RER), the wind energy share in the global energy production is increasing rapidly. Currently, the Government of Pakistan (GoP) is moving towards RER, specifically wind and solar energy. In this paper, the wind energy potential of Tando Ghulam Ali, Sindh, Pakistan is explored. For this purpose, one-year wind speed data is considered at various heights through various probability distribution functions (PDFs). Statistical comparison of Rayleigh, gamma, generalized extreme value (GEV) and lognormal PDFs have been done with two methods, namely root mean square error and (R^2) in order to select the best PDF. Results showed that the Rayleigh distribution function is the best at the above mentioned area for finding various factors like site selection and wind power cost per kWh.


wind energy; wind probability distribution function; fitting tool

Full Text:



M. H. Baloch, G. S. Kaloi, J. Wang, “Feasible Wind Power Potential from Costal Line of Sindh Pakistan”, Research Journal of Applied Sciences, Engineering and Technology, Vol. 10, No. 4, pp. 393-400, 2015

V. Sohoni, S. Gupta, R. Nema, “A comparative analysis of wind speed probability distributions for wind power assessment of four sites”, Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 24, No. 6, pp. 4724-4735, 2016

K. W. G. D. H. Rajapaksha, K. Perera, “Wind speed analysis and energy calculation based on mixture distributions in Narak kalliya, Sri Lanka”, Journal of the National Science Foundation of Sri Lanka Vol. 44, No. 4, pp. 409-416, 2016

A. Parajuli, “A statistical analysis of wind speed and power density based on Weibull and Rayleigh models of Jumla, Nepal”, Energy and Power Engineering, Vol. 8, No. 7, pp. 271-271, 2016

A. K. Azad, M. G. Rasul, T. Yusaf, “Statistical diagnosis of the best weibull methods for wind power assessment for agricultural applications”, Energies, Vol. 7, No. 5, pp. 3056-3085, 2014

S. F. Khahro, K. Tabbassum, A. M. Soomro, L. Dong, X. Liao, “Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan”, Energy conversion and Management, Vol. 78, pp. 956-967, 2014

A. Zaharim, A. M. Razali, R. Z. Abidin, K. Sopian, “Fitting of statistical distributions to wind speed data in Malaysia”, European Journal of Scientific Research, Vol. 26, No. 1, pp. 6-12, 2009

Y. Q. Xiao, Q. S. Li, Z. N. Li, Y. W. Chow, G. Q. Li, “Probability distributions of extreme wind speed and its occurrence interval”, Engineering Structures, Vol. 28, No. 8, pp. 1173-1181, 2006

S. H. Pishgar-Komleh, A. Keyhani, P. Sefeedpari, “Wind Speed and Power Density Analysis Based on Weibull and Rayleigh Distributions (A Case Study: Firouzkooh County of Iran)”, Renewable and Sustainable Energy Reviews, Vol. 42, pp. 313-322, 2015

T. B. Ouarda, C. Charron, J. Y. Shin, P. R., Marpu, A. H. Al-Mandoos, M. H. Al-Tamimi, H. Ghedira, T. N. Al Hosary, “Probability distributions of wind speed in the UAE. Energy Conversion and Management, Vol. 93, pp. 414-434, 2015

P. A. C. Rocha, R. C. de Sousa, C. F. de Andrade, M. E. V. da Silva, “Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil”, Applied Energy, Vol. 89, No. 1, pp. 395-400, 2012

Z. Olaofe, K. Folly, “Statistical Analysis of the Wind Resources at Darling for Energy Production”, International Journal of Renewable Energy Research, Vol. 2, pp. 250-261, 2012

C. Tian Pau, “Estimation of wind energy potential using different probability density functions”, Applied Energy, Vol. 88, No. 5, pp. 1848-1856, 2011

V. T. Morgan, “Statistical distributions of wind parameters at Sydney, Australia”, Renewable Energy, Vol. 6, No. 1, pp. 39-47, 1995

Y. An, M. D. Pandey, “The r largest order statistics model for extreme windspeed estimation”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 95, No. 3, pp. 165-182, 2007

A. Azad, M. Rasul, T. Yusaf, “Statistical Diagnosis of the Best Weibull Methods for Wind Power Assess-ment for Agricultural Applications”, Energies, Vol. 7, pp. 3056-3085, 2014

S. A. Akdag, A. Dinler, “A new method to estimate Weibull parameters for wind energy applications”, Energy Conversion and Management, Vol. 50, No. 7, pp. 1761-1766, 2009

T. Soukissian, “Use of multi-parameter distributions for offshore wind speed modelling: the Johnson S E distribution”, Applied Energy, Vol. 111, pp. 982-1000, 2013

A. Mostafaeipour, A. Sedaghat, A. A. Dehgan-Niri, V. Kalantar, “Wind energy feasibility study for city of Shahr babak in Iran”, Renewable Sustainable Energy Reviews, Vol. 15, No. 6, pp. 2545-2556, 2011

M. H. Baloch, S. A. Abro, G. S. Kaloi, N. H. Mirjat, S. Tahir, M. H. Nadeem, M. Gul, Z. A. Memon, M. Kumar, “A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones”, Sustainability, Vol. 9, No. 9, 2017

M. H. Baloch, G. S. Kaloi, Z. A. Memon, “Current scenario of the wind energy in Pakistan challenges and future perspectives: A case study”, Energy Reports, Vol. 2, pp. 201-210, 2016

G. S. Kaloi, J. Wang, M. H. Baloch, S. Tahir, “Wind Energy Potential at Badin and Pasni Costal Line of Pakistan”, International Journal of Renewable Energy Development, Vol. 6, No. 2, pp. 103-110, 2017

M. H. Baloch, J. Wang, G. S. Kaloi, “A Point of View: Analysis and Investigation of Wind Power from Southern Region of Pakistan”, International Journal of Energy Conversion, Vol. 3, No. 3, pp. 103-110, 2015

eISSN: 1792-8036     pISSN: 2241-4487