Prediction of Springback in the Air Bending Process Using a Kriging Metamodel

F. A. Khadra, A. W. El-Morsy


This paper addresses the use of the kriging‏ approach to predict the springback in the air bending process. The materials and the geometrical parameters, which significantly affect the springback, were considered as inputs, and the springback angle was considered as the response. A verified nonlinear finite element model was used to generate the training data required to create the kriging‏ metamodel. The training examples were selected based on computer-generated D-optimal designs. A comparison between the kriging approaches and the response surface methodology is conducted and discussed. The results showed that kriging accurately predicts the finite element springback results. Comparing the accuracy of kriging with a response surface methodology shows that kriging with a 2nd degree polynomial and exponential correlation function predicts the springback more accurately than the response surface methodology.


Metamodels; Springback; Kriging; Response Surface Methodology; D-Optimal Designs

Full Text:



M. Osman, M. Shazly, A. El-Mokaddem, A. Wifi, “Springback prediction in V-die bending: modelling and experimentation”, J. Achiev. Mater. Manufac. Eng., Vol. 38, pp. 179-186, 2010

T. Botelho, E, Bayraktar, G. Inglebert, “Comparison of experimental and simulation results of 2D-draw-bend spring-back”, J. Achiev. Mater. Manufac. Eng., Vol. 18, pp. 275-278, 2006

I. Ragai, D. Lazim, J. Nemes, “Anisotropy and springback in draw-bending of stainless steel 410: experimental and numerical study”, J. Mater. Proc. Techno., Vol. 166, pp. 116–127, 2005

M. Sitar, F. Kosel, M. Brojan, “Numerical and experimental analysis of elastic–plastic pure bending and springback of beams of asymmetric cross-sections”, Int. J. Mech. Sci., Vol. 90, pp. 77-88, 2015

F. Kosel, T. Videnic, T. Kosel, M. Brojan, “Elasto-plastic springback of beams subjected to repeated bending/unbending histories”, J. Mater. Eng. Perform., Vol. 20, pp. 846–854, 2011

Y. Zhu, Y. Liu, H. Yang, H. Li, “Improvement of the accuracy and the computational efficiency of the springback prediction model for the rotary-draw bending of rectangular H96 tube”, Int. J. Mech. Sci., Vol. 66, pp. 224–232, 2012

R. Kazan, M. Firat, A. Tiryaki, “Prediction of springback in wipe-bending process of sheet metal using neural network”, Materials & Design, Vol. 30, pp. 418–423, 2009

A. Ghaei, “Numerical simulation of springback using an extended return mapping algorithm considering strain dependency of elastic modulus”, Int. J. Mech. Sci., Vol. 65, pp. 38–47, 2012

E. Nakamachi, T. Honda, H. Kuramae, Y. Morita, T. Ohata, H. Morimoto, “Two-scale finite element analyses for bendability and springback evaluation based on crystallographic homogenization method”, Int. J. Mech. Sci., Vol. 80, pp. 109-121, 2014

H. Kim, N. Nargundkar, T. Altan, “Prediction of bend allowance and springback in air bending”, J. Manufac. Sci. Eng., Vol. 129, pp. 342-351, 2006

S. Panthi, N. Ramakrishnan, K. Pathak, J. Chouhan, “An analysis of springback in sheet metal bending using finite element method”, J. Mater. Proc. Techno., Vol. 186, pp. 120–124, 2007

I. Vladimirov, M. Nargundkar, S. Reese, “Prediction of springback in sheet forming by a new finite strain model with nonlinear kinematic and isotropic hardening”, J. Mater. Proc. Techno., Vol. 209, pp. 4062-4075, 2009

R. Srinivasan, D. Vasudevan, A. Padmanabhan, “Prediction of spring-back and bend force in air bending of electro-galvanised steel sheets using artificial neural networks”, Aust. J. Mech. Eng., Vol. 12, pp. 25-37, 2014

H. Baseri, B. Rahmani, Bakhshi-JM, “Predictive Models of the Spring-Back in the Bending Process, Applied Artificial Intelligence”, Appl. Artificial. Intell., Vol. 26, pp. 862–877, 2012

L. Wang, G. Huang, H. Zhang, Y. Wang, L. Yin, “Evolution of springback and neutral layer of AZ31B magnesium alloy V-bending under warm forming conditions”, J. Mater. Proc. Techno., Vol. 213, pp. 844–850, 2013

D. Zhang, Z. Cui, X. Ruan, Y. Li, “An analytical model for predicting springback and side wall curl of sheet after U-bending”, Compu. Mater. Sci., Vol. 38, pp. 707–715, 2007

M. Firat, “U-Channel Forming Analysis with an Emphasis on Springback Deformation”, Materials & Design, Vol. 28, pp. 147-154, 2007

P. Chen, M. Koç, “Simulation of springback variation in forming of advanced high strength steels”, J. Mater. Proc. Techno., Vol. 190, pp. 189–198, 2007

G. Sharad, V. Nandedkar, “Springback in Sheet Metal U Bending-FEA and Neural Network”, Approach Procedia Mater. Sci. Vol. 6, pp. 835-839, 2014

A. Mkaddem, D. Saidane, “Experimental approach and RSM procedure on the examination of springback in wiping-die bending processes”, J. Mater. Proc. Techno., Vol. 189, pp. 325–333, 2007

T. Zou, J. Xin, D, Li, Q. Ren, “Analytical approach of springback of arced thin plates bending”, Procedia Eng., Vol. 81, pp. 993–998, 2014

S. Feifei, Y. He, L. Heng, Z. Mei, L. Guangjun, “Springback prediction of thick-walled high-strength titanium tube bending”, Chinese J. Aeronautics, Vol. 26, pp. 1336–1345, 2013

X. Yang, C. Choi, N. Sever, T. Altan, “Prediction of springback in air-bending of Advanced High Strength steel (DP780) considering Young's modulus variation and with a piecewise hardening function”, Int. J. Mech. Sci., Vol. 105, pp. 266–272, 2016

J. Lee, F. Barlat, M. Lee, “Constitutive and friction modeling for accurate springback analysis of advanced high strength steel sheets”, Int. J. Plasticity, Vol. 71, pp. 113-135, 2015

M. Tisza, Z. Lukacs, “Springback analysis of high strength dual-phase steels”, Procedia Eng., Vol. 81, pp. 975-980, 2014

S. Panthi, N. Ramakrishnan, “Semi analytical modeling of springback in arc bending and effect of forming load”, Trans. Nonferrous Met. Soc. China, Vol. 21, pp. 2276−2284, 2011

N. Nanu, G. Brabie, “Analytical model for prediction of springback parameters in the case of U stretch–bending process as a function of stresses distribution in the sheet thickness”, Int. J. Mech. Sci., Vol. 64, pp. 11–21, 2012

X. Xue, J. Liao, G. Vincze, J. Gracio, “Modelling of mandrel rotary draw bending for accurate twist springback prediction of an asymmetric thin-walled tube”, J. Mater. Proc. Techno., Vol. 216, pp. 405–417, 2015

M. Lee, J. Kim, K. Chung, S. Kim, R. Wagoner, H. Kim, “Analytical springback model for lightweight hexagonal close-packed sheet metal”, Int. J. Plasticity, Vol. 25, pp. 399–419, 2009

V. Esat, H. Darendeliler, M. Gokler, “Finite element analysis of springback in bending of aluminium sheets”, Materials & Design, Vol. 23, pp. 223-229, 2002

S. Lee, D. Yang, “An assessment of numerical parameters influencing springback in explicit finite element analysis of sheet metal forming process”, J. Mater. Proc. Techno., Vol. 80, pp. 60-67, 1998

K. Li, W. Carden, R. Wagoner, “Simulation of springback”, Int. J. Mech. Sci., Vol. 44, pp. 103–122, 2002

L. De-Vin, “Curvature prediction in air bending of metal sheet”, J. Mater. Proc. Techno., Vol. 100, pp. 257-261, 2000

C. Díaz, M. Victoria, O. Querin, P. Martí, “Optimum design of semi-rigid connections using metamodels”, J. Constructional Steel Res., Vol. 78, pp. 97–106, 2012

A. Khuri, J. Cornell, Response Surfaces: designs and analyses, 2nd ed. New York ISBN 0-8247-9781-8, 1996

D. Allaix, V. Carbone, “An improvement of the response surface method”, Structural Safety, Vol. 33, pp. 165–172, 2011

A. Taflanidis, “Stochastic subset optimization incorporating moving least squares response surface methodologies for stochastic sampling”, Adv. Eng. Soft., Vol. 44, pp. 3–14, 2012

F. Abu-Khadra, J. Abu-Qudeiri, “Comparison between neural network and response surface metamodels based on D–optimal designs”, Int. J. Compu. Mater. Sci. Sur. Eng., Vol. 5, pp. 85-101, 2013

M. Ali-Tavoli, N. Nariman, A. Khakhali, “Multi-objective optimization of abrasive flow machining processes using polynomial neural networks and genetic algorithms”, Mach. Sci. Techno., Vol. 10, pp. 491–510, 2006

M. Naseri, F. Othman, “Determination of the length of hydraulic jumps using artificial neural networks”, Adv. Eng. Soft., Vol. 48, pp. 27–31, 2012

V. Papadopoulos, D. Giovanis, N. Lagaros, M. Papadrakakis, “Accelerated subset simulation with neural networks for reliability analysis”, Compu. Meth. Appl. Mech. Eng. Vol. 223, pp. 70-80, 2012

R. Narayanasamy, P. Padmanabhan, “Comparison of regression and artificial neural network model for the prediction of springback during air bending process of interstitial free steel sheet”, J. Intelligent Manufacturing, Vol. 23, pp. 357-364, 2012

H. Sun, M. Schafer, “Reduced order model assisted evolutionary algorithms for multi-objective flow design optimization”, Engineering Optimization, Vol. 43, pp. 97–114, 2011

F. Magoules, L. Diago, I. Hagiwara, “Efficient preconditioning for image reconstruction with radial basis functions”, Adv. Eng. Soft., Vol. 38, pp. 320–327, 2007

H. Safikhani, A. Khalkhali, M. Farajpoor, “Pareto based multi-objective optimization of centrifugal pumps using CFD, neural networks and genetic algorithms”, Engineering Applications of Computational Fluid Mechanics, Vol. 5, pp. 37-48, 2011

J. C. Kleijnen, Design and Analysis of Simulation Experiments; 2nd ed. Springer, 2015.

N. Cressie, “The Origins of Kriging”, Math. Geo., Vol. 22, pp. 239-252, 1990.

B. Echard, N. Gayton, M. Lemaire, “AK-MCS an active learning reliability method combining Kriging and Monte Carlo Simulation”, Structural Safety, Vol. 33, pp. 145–154, 2011

B. Echard, N. Gayton, M. Lemaire, N. Relun, “A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models”, Reliab. Eng. Sys. Saf., Vol. 111, pp. 232–240, 2013

Z. Fu, M. Jianhua, “Springback prediction of high-strength sheet metal under air bending forming and tool design based on GA–BPNN”, Int. J. Adv. Manufac. Techno., Vol. 53, pp. 473-483, 2011

S. Chen, X. Hong, C. Harris, “Regression based D-optimality experimental design for sparse kernel density estimation”, Neurocomputing, Vol. 73, pp. 727–739, 2010

eISSN: 1792-8036     pISSN: 2241-4487