An Enhanced Z-Source Switched MLI Capacitor for Integrated Micro-Grid with Advanced Switching Pattern Scheme
Received: 12 March 2022 | Revised: 11 April 2022, 30 April 2022, and 7 June 2022 | Accepted: 8 June 2022 | Online: 7 August 2022
Corresponding author: B. M. Manjunatha
Abstract
In this paper, the Enhanced Z-Source Switched Capacitor Multi-Level Inverter (EZSC-MLI) is presented, which can generate a greater number of levels and magnitude in output. The proposed MLI has greater recognition due to its low harmonic profile, fewer switching components, compact size, low switch stress, isolated DC supply, high efficiency, and low cost. A high voltage boost factor is achieved by using the Z-Source. The Switched Capacitor module is used for charging all the capacitors to equal voltage magnitude based on a self-balanced scheme. The proposed topology for grid integration requires dual control loops, a primary voltage control loop, and a secondary current control loop. The performance of the proposed 7-level topology for grid integrated systems is verified with multi-carrier advanced modulation schemes and by simulations carried out in Matlab/Simulink.
Keywords:
Distributed Energy Resources, Multi-Carrier Modulation Techniques, Multi-Level Inverter, Impedance Source, Renewable Energy Sources, Switched CapacitorDownloads
References
M. A. Hannan, S. Y. Tan, A. Q. Al-Shetwi, K. P. Jern, and R. A. Begum, "Optimized controller for renewable energy sources integration into microgrid: Functions, constraints and suggestions," Journal of Cleaner Production, vol. 256, May 2020, Art. no. 120419. DOI: https://doi.org/10.1016/j.jclepro.2020.120419
L. M. Castro, J. R. Rodríguez-Rodríguez, and C. Martin-del-Campo, "Modelling of PV systems as distributed energy resources for steady-state power flow studies," International Journal of Electrical Power & Energy Systems, vol. 115, Feb. 2020, Art. no. 105505. DOI: https://doi.org/10.1016/j.ijepes.2019.105505
M. Kwon and S. Choi, "Control Scheme for Autonomous and Smooth Mode Switching of Bidirectional DC–DC Converters in a DC Microgrid," IEEE Transactions on Power Electronics, vol. 33, no. 8, pp. 7094–7104, Dec. 2018. DOI: https://doi.org/10.1109/TPEL.2017.2753845
F. Z. Peng, M. Shen, and Z. Qian, "Maximum boost control of the Z-source inverter," IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 833–838, Jul. 2005. DOI: https://doi.org/10.1109/TPEL.2005.850927
J. Wang, J. Wang, B. Xiao, Z. Gui, and W. Jiang, "Full Range Capacitor Voltage Balance PWM Strategy for Diode-Clamped Multilevel Inverter," Electronics, vol. 9, no. 8, Aug. 2020, Art. no. 1263. DOI: https://doi.org/10.3390/electronics9081263
A. Rahmati, M. Arasteh, S. Farhangi, and A. Abrishamifar, "Flying Capacitor DTC Drive with Reductions in Common Mode Voltage and Stator Overvoltage," Journal of Power Electronics, vol. 11, no. 4, pp. 512–519, 2011. DOI: https://doi.org/10.6113/JPE.2011.11.4.512
S. Ray, N. Gupta, and R. A. Gupta, "A Comprehensive Review on Cascaded H-bridge Inverter-Based Large-Scale Grid-Connected Photovoltaic," IETE Technical Review, vol. 34, no. 5, pp. 463–477, Sep. 2017. DOI: https://doi.org/10.1080/02564602.2016.1202792
P. R. Bana, K. P. Panda, and G. Panda, "Performance evaluation of a reduced components count single-phase asymmetric multilevel inverter with low standing voltage," International Transactions on Electrical Energy Systems, vol. 30, no. 8, 2020, Art. no. e12430. DOI: https://doi.org/10.1002/2050-7038.12430
N. Vishwajith, S. N. Rao, and S. Sachin, "Performance analysis of reduced switch ladder type multilevel inverter using various modulation control strategies," Journal of Physics: Conference Series, vol. 1706, no. 1, Sep. 2020, Art. no. 012092. DOI: https://doi.org/10.1088/1742-6596/1706/1/012092
B. M. Manjunath, D. V. Ashok Kumar, and M. Vijaya Kumar, "A Simplified PWM Technique for Isolated DC-DC Converter Fed Switched Capacitor Multi-Level Inverter for Distributed Generation," International Journal of Power Electronics and Drive Systems, vol. 8, no. 3, pp. 1230–1239, Sep. 2017. DOI: https://doi.org/10.11591/ijpeds.v8.i3.pp1230-1239
S. N. Rao, D. V. Ashok Kumar, and Babu, "Integration of Reversing Voltage Multilevel Inverter Topology with High Voltage Gain boost Converter for Distributed Generation," International Journal of Power Electronics and Drive Systems, vol. 9, no. 1, pp. 210–219, Mar. 2018. DOI: https://doi.org/10.11591/ijpeds.v9.i1.pp210-219
M. Budagavi Matam, A. K. Devarasetty Venkata, and V. K. Mallapu, "Evaluation of Impedance network Based 7-Level Switched Capacitor Multi Level Inverter for Single Phase Grid Integrated System," Journal of The Institution of Engineers (India): Series B, vol. 99, no. 6, pp. 623–633, Dec. 2018. DOI: https://doi.org/10.1007/s40031-018-0348-2
P. Omer, J. Kumar, and B. S. Surjan, "A Review on Reduced Switch Count Multilevel Inverter Topologies," IEEE Access, vol. 8, pp. 22281–22302, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.2969551
Z. Boussada, O. Elbeji, and M. Benhamed, "Different topologies and control techniques of multi level inverter: A literature survey," in 2017 International Conference on Green Energy Conversion Systems (GECS), Hammamet, Tunisia, Mar. 2017. DOI: https://doi.org/10.1109/GECS.2017.8066187
B. M. Manjunatha, S. N. Rao, A. S. Kumar, K. S. Zabeen, S. Lakshminarayanan, and A. V. Reddy, "An Optimized Multilevel Inverter Topology with Symmetrical and Asymmetrical DC Sources for Sustainable Energy Applications," Engineering, Technology & Applied Science Research, vol. 10, no. 3, pp. 5719–5723, Jun. 2020. DOI: https://doi.org/10.48084/etasr.3509
A. Nouaiti, A. Saad, A. Mesbahi, M. Khafallah, and M. Reddak, "Design and Test of a New Three-Phase Multilevel Inverter for PV System Applications," Engineering, Technology & Applied Science Research, vol. 9, no. 1, pp. 3846–3851, Feb. 2019. DOI: https://doi.org/10.48084/etasr.2573
D. A. Tuan, P. Vu, and N. V. Lien, "Design and Control of a Three-Phase T-Type Inverter using Reverse-Blocking IGBTs," Engineering, Technology & Applied Science Research, vol. 11, no. 1, pp. 6614–6619, Feb. 2021. DOI: https://doi.org/10.48084/etasr.3954
T. Demirdelen, R. I. Kayaalp, and M. Tumay, "A Modular Cascaded Multilevel Inverter Based Shunt Hybrid Active Power Filter for Selective Harmonic and Reactive Power Compensation Under Distorted/Unbalanced Grid Voltage Conditions," Engineering, Technology & Applied Science Research, vol. 6, no. 5, pp. 1133–1138, Oct. 2016. DOI: https://doi.org/10.48084/etasr.777
S. A. Dayo, S. H. Memon, M. A. Uqaili, and Z. A. Memon, "LVRT Enhancement of a Grid-tied PMSG-based Wind Farm using Static VAR Compensator," Engineering, Technology & Applied Science Research, vol. 11, no. 3, pp. 7146–7151, Jun. 2021. DOI: https://doi.org/10.48084/etasr.4147
Z. Ramli, J. Jamaludin, N. Abd Rahim, and S. R. Azzuhri, "Capacitor Voltage Balancing with Online Controller Performance-Based Tuning for a Switch-Sharing-Based Multilevel Inverter," Applied Sciences, vol. 11, no. 10, Jan. 2021, Art. no. 4428. DOI: https://doi.org/10.3390/app11104428
A. Moghassemi and S. Padmanaban, "Dynamic Voltage Restorer (DVR): A Comprehensive Review of Topologies, Power Converters, Control Methods, and Modified Configurations," Energies, vol. 13, no. 16, Jan. 2020, Art. no. 4152. DOI: https://doi.org/10.3390/en13164152
T. Nguyen-Van, R. Abe, and K. Tanaka, "A Digital Hysteresis Current Control for Half-Bridge Inverters with Constrained Switching Frequency," Energies, vol. 10, no. 10, Oct. 2017, Art. no. 1610. DOI: https://doi.org/10.3390/en10101610
Downloads
How to Cite
License
Copyright (c) 2022 B. M. Manjunatha, S. Nagaraja Rao, A. Suresh Kumar, V. Lakshmi Devi, P. Rama Mohan, K. Bramhanandam
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.