An Optimized Multilevel Inverter Topology with Symmetrical and Asymmetrical DC Sources for Sustainable Energy Applications

Authors

  • B. M. Manjunatha Department of Electrical and Electronics Engineering, Rajeev Gandhi Memorial College of Engineering and Technology, India https://orcid.org/0000-0002-7777-1757
  • S. Nagaraja Rao Department of EEE, M. S. Ramaiah University of Applied Sciences, India
  • A. Suresh Kumar Department of Electrical and Electronics Engineering, Rajeev Gandhi Memorial College of Engineering and Technology, India
  • K. Shaguftha Zabeen Department of Electrical and Electronics Engineering, Rajeev Gandhi Memorial College of Engineering and Technology, India
  • S. Lakshminarayanan Department of Electrical and Electronics Engineering, BMS Institute of Technology and Management, India
  • A. V. Reddy Department of Electrical and Electronics Engineering, Golden Valley Integrated Campus, India

Abstract

This paper proposes an optimized Multi-Level Inverter (MLI) topology with symmetrical and asymmetrical DC sources for sustainable energy applications. The proposed MLI has optimized components to reduce size, cost, and installation area in comparison with traditional MLIs. It also improves output power quality by reducing harmonics in the stepped output, and hence it can be used for sustainable energy applications with a grid interface. The proposed inverter is equipped with six switching devices, one clamping diode, and two DC sources. It produces a five-level stepped output when using symmetrical DC sources and a seven-level stepped output when using asymmetrical DC sources. In this topology, the six switching devices are divided into two units, namely the level generator and the polarity generator units, the switches used in the level generator are responsible for producing the required number of levels in the form of rectified stepped output and the switches used in the polarity generator are responsible for converting the rectified stepped waveform to stepped AC output. The simulation results verify the operation of the MLI when fed with linear load with symmetrical and asymmetrical DC sources, and the experimental output results are presented for validation.

Keywords:

optimal multilevel inverter, symmetrical, asymmetrical, total harmonic distortion

Downloads

Download data is not yet available.

References

H. Akagi, “Multilevel converters: Fundamental circuits and systems”, Proceedings of the IEEE, Vol. 105, No. 11, pp. 2048-2065, 2017 DOI: https://doi.org/10.1109/JPROC.2017.2682105

Z. Zheng, K. Wang, L. Xu, Y. Li, “A hybrid cascaded multilevel converter for battery energy management applied in electric vehicles”, IEEE Transactions on Power Electronics, Vol. 29, No. 7, pp. 3537-3546, 2014 DOI: https://doi.org/10.1109/TPEL.2013.2279185

Q. A. Le, D. C. Lee, “A novel six-level inverter topology for medium-voltage applications”, IEEE Transactions on Industrial Electronics, Vol. 63, No. 11, pp. 7195-7203, 2016 DOI: https://doi.org/10.1109/TIE.2016.2547909

X. Yuan, “Derivation of voltage source multilevel converter topologies,'' IEEE Transactions on Industrial Electronics, Vol. 64, No. 2, pp. 966-976, 2017 DOI: https://doi.org/10.1109/TIE.2016.2615264

A. Boora, A. Nami, F. Zare, A. Ghosh, F. Blaabjerg, “ Voltage sharing converter to supply single-phase asymmetric four-level diode clamped inverter with high power factor loads”, IEEE Transactions on Power Electronics, Vol. 25, No. 10, pp. 2507–2520, 2010 DOI: https://doi.org/10.1109/TPEL.2010.2046651

M. Khazraei, H. Sepahvand, K. A. Corzine, M. Ferdowsi, “Active capacitor voltage balancing in single-phase flying-capacitor multilevel power converters”, IEEE Transactions on Industrial Electronics, Vol. 59, No. 2, pp. 769-778, 2012 DOI: https://doi.org/10.1109/TIE.2011.2157290

N. Prabaharan, K. Palanisamy, “Analysis of cascaded H-bridge multilevel inverter configuration with double level circuit,” IET Power Electronics, Vol. 10, No. 9, pp. 1023-1033, 2017 DOI: https://doi.org/10.1049/iet-pel.2016.0506

M. F. Kangarlu, E. Babaei, M. Sabahi, “Cascaded cross-switched multilevel inverter in symmetric and asymmetric conditions”, IET Power Electronics, Vol. 6, No. 6, pp. 1041-1050, 2013 DOI: https://doi.org/10.1049/iet-pel.2012.0563

J. Venkataramanaiah, Y. Suresh, A. K. Panda, “A review on symmetric, asymmetric, hybrid and single DC sources based multilevel inverter topologies”, Renewable and Sustainable Energy Reviews, Vol. 76C, pp. 788-812, 2017 DOI: https://doi.org/10.1016/j.rser.2017.03.066

J. Zhao, Y. Han, X. He, C. Tan, J. Cheng, R. Zhao, “Multilevel circuit topologies based on the switched-capacitor converter and diode-clamped converter”, IEEE Transactions on Power Electronics, Vol. 26, No. 8, pp. 2127-2136, 2011 DOI: https://doi.org/10.1109/TPEL.2010.2104330

M. B. Matam, A. K. D. Venkata, V. K. Mallapu, “Analysis and implementation of impedance source based switched capacitor multi-level inverter”, Engineering Science and Technology, an International Journal, Vol. 21, No. 5, pp. 869-885, 2018 DOI: https://doi.org/10.1016/j.jestch.2018.08.003

E. Babaei, S. Laali, Z. Bayat, “A single-phase cascaded multilevel inverter based on a new basic unit with reduced number of power switches”, IEEE Transactions on Industrial Electronics, Vol. 62, No. 2, pp. 922-929, 2015 DOI: https://doi.org/10.1109/TIE.2014.2336601

K. K. Gupta, A. Ranjan, P. Bhatnagar, L. K. Sahu, S. Jain, “Multilevel inverter topologies with reduced device count: A review,” IEEE Transactions on Power Electronics, Vol. 31, No. 1, pp. 135-151, 2016 DOI: https://doi.org/10.1109/TPEL.2015.2405012

R. S. Alishah, S. H. Hosseini, E. Babaei, M. Sabahi, “Optimal design of new cascaded switch-ladder multilevel inverter structure,” IEEE Transactions on Industrial Electronics, Vol. 64, No. 3, pp. 2072-2080, 2017 DOI: https://doi.org/10.1109/TIE.2016.2627019

M. D. Siddique, S. Mekhilef, N. M. Shah, A. Sarwar, M. A. Memon, M. Seyedmahmoudian, B. Horan, A. Stojcevski, K. Ogura, M. Rawa, H. Bassi, “Asymmetrical multilevel inverter topology with reduced number of components”, 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems, Chennai, India, December 18-21, 2018 DOI: https://doi.org/10.1109/PEDES.2018.8707663

U. B. Tayab, M. A. Al Humayun, “Modeling and analysis of a cascaded battery-boost multilevel inverter using different switching angle arrangement techniques”, Engineering, Technology & Applied Science Research, Vol. 7, No. 2, pp. 1450-1454, 2017 DOI: https://doi.org/10.48084/etasr.1094

A. Nouaiti, A. Saad, A. Mesbahi, M. Khafallah, M. Reddak “Design and rest of a new three-phase multilevel inverter for PV system applications”, Engineering Technology & Applied Science Research, Vol. 9, No. 1, pp. 3846-3851, 2019 DOI: https://doi.org/10.48084/etasr.2573

S. N. Rao, D. V. Ashok Kumar, C. Sai Babu. “Implementation of multilevel boost DC-link cascade based reversing voltage inverter for low THD operation”, Journal of Electrical Engineering & Technology, Vol. 13, No. 4, pp. 1528-1538, 2018

Downloads

How to Cite

[1]
Manjunatha, B.M., Nagaraja Rao, S., Suresh Kumar, A., Shaguftha Zabeen, K., Lakshminarayanan, S. and Reddy, A.V. 2020. An Optimized Multilevel Inverter Topology with Symmetrical and Asymmetrical DC Sources for Sustainable Energy Applications. Engineering, Technology & Applied Science Research. 10, 3 (Jun. 2020), 5719–5723. DOI:https://doi.org/10.48084/etasr.3509.

Metrics

Abstract Views: 788
PDF Downloads: 572

Metrics Information

Most read articles by the same author(s)