Parametric Analysis of the Defected Ground Structure-Based Hairpin Band Pass Filter for VSAT System on Chip Applications
Received: 15 September 2021 | Revised: 2 October 2021 | Accepted: 9 October 2021 | Online: 11 December 2021
Corresponding author: N. Ambati
Abstract
In this study, a three-pole hairpin structure was fabricated on the top of the substrate material and an open loop microstrip structure at the ground to give a modified triple-band BPF with a unique design. A Rogers (RT5880) material with εr = 2.2 and thickness of 1.27mm was used to fabricate the proposed structure. The space between two consecutive hairpin resonators has different distances d1 and d2 with values of 0.2mm and 0.4mm respectively. The proposed filter offers a compact size with low return loss. The equivalent LC circuit of the DGS and hairpin structure is obtained with the Ansys electronic desktop and by using simple circuit analysis. The desired microstrip triple-band BPF operates at the Ku band, resonates at 10.28GHz, 12GHz, and 14.62GHz, while the simulated and experimental results are almost identical. The proposed wideband BPF satisfies the International Telecommunication Union ((ITU) region 3 spectrum requirements. Direct Broadcast Service (DBS) and Fixed Satellite Service (FSS) in transmit mode respectively employ the frequency band 11.41-12.92GHz and 14-14.5GHz.
Keywords:
group delay, DGS, hairpin line BPF, microstrip transmission line, return loss, insertion lossDownloads
References
M. Richtarsic and J. Thornton, "Characterization and optimization of LTCC for high density large area MCM’s," in Proceedings. 1998 International Conference on Multichip Modules and High Density Packaging (Cat. No.98EX154), Denver, CO, USA, Apr. 1998, pp. 92–97, https://doi.org/10.1109/ICMCM.1998.670761.
H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, "A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones," in 1997 IEEE MTT-S International Microwave Symposium Digest, Denver, CO, USA, Jun. 1997, vol. 2, pp. 789–792 vol.2, https://doi.org/10.1109/MWSYM.1997.602908.
J.-T. Kuo and H.-S. Cheng, "Design of quasi-elliptic function filters with a dual-passband response," IEEE Microwave and Wireless Components Letters, vol. 14, no. 10, pp. 472–474, Oct. 2004, https://doi.org/10.1109/LMWC.2004.834560.
M. Makimoto and S. Yamashita, "Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators," IEEE Transactions on Microwave Theory and Techniques, vol. 28, no. 12, pp. 1413–1417, Dec. 1980, https://doi.org/10.1109/TMTT.1980.1130258.
A. A. Sulaiman et al., "Design of hairpin band pass filters for K-Band application," in 2008 IEEE International RF and Microwave Conference, Kuala Lumpur, Malaysia, Dec. 2008, pp. 23–26, https://doi.org/10.1109/RFM.2008.4897401.
Y. Di, P. Gardner, P. S. Hall, H. Ghafouri-Shiraz, and J. Zhou, "Multiple-coupled microstrip hairpin-resonator filter," IEEE Microwave and Wireless Components Letters, vol. 13, no. 12, pp. 532–534, Dec. 2003, https://doi.org/10.1109/LMWC.2003.819377.
C.-K. Hsu, H.-H. Tung, and C.-H. Hsu, "Microstrip cross-coupled interdigital hairpin bandpass filter," in 2008 Asia-Pacific Microwave Conference, Dec. 2008, pp. 1–4, https://doi.org/10.1109/APMC.2008.4958177.
Q. Yang, X. Xiong, Y. Wu, L. Wang, and H. Xiao, "Design of microstrip tapped-hairpin dual-band pass filter for Ku-band application," in 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, May 2010, pp. 772–774, https://doi.org/10.1109/ICMMT.2010.5525064.
J. Sheen, Y.-H. Cheng, and W. Liu, "Ku-band Bandpass Filter Design with Compact Size and Broad Stopband by pHEMT Process," in 2019 PhotonIcs Electromagnetics Research Symposium - Spring (PIERS-Spring), Rome, Italy, Jun. 2019, pp. 1022–1026, https://doi.org/10.1109/PIERS-Spring46901.2019.9017867.
C. S. Panda, R. Nayak, and S. K. Behera, "Design and analysis of a compact Substrate Integrated Waveguide bandpass filter for Ku band applications," in 2016 Online International Conference on Green Engineering and Technologies (IC-GET), Coimbatore, India, Nov. 2016, pp. 1–5, https://doi.org/10.1109/GET.2016.7916694.
P. Sridharan and S. B.S, "Design and analysis of 1–10GHz band selected bandpass filter with broad tunable range," in 2014 International Conference on Communication and Signal Processing, Melmaruvathur, India, Apr. 2014, pp. 303–306, https://doi.org/10.1109/ICCSP.2014.6949850.
G. Zhiqiang, "A downsized and integrated C-band transceiver for VSAT," in Proceedings of 1995 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Rio de Janeiro, Brazil, Jul. 1995, vol. 1, pp. 33–36, https://doi.org/10.1109/SBMOMO.1995.509594.
J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York, NY, USA: John Wiley & Sons, 2001.
M. Hayati, L. Noori, and A. Adinehvand, "Compact dual-band bandpass filter using open loop resonator for multimode WLANs," Electronics Letters, vol. 48, no. 10, pp. 573–574, May 2012.
D. V. Doan, K. Nguyen, and Q. V. Thai, "A Novel Fuzzy Logic Based Load Frequency Control for Multi-Area Interconnected Power Systems," Engineering, Technology & Applied Science Research, vol. 11, no. 4, pp. 7522–7529, Aug. 2021, https://doi.org/10.48084/etasr.4320.
N. A. Zainurin, S. a. B. Anas, and R. S. S. Singh, "A Review of Battery Charging - Discharging Management Controller: A Proposed Conceptual Battery Storage Charging – Discharging Centralized Controller," Engineering, Technology & Applied Science Research, vol. 11, no. 4, pp. 7515–7521, Aug. 2021, https://doi.org/10.48084/etasr.4217.
Z. A. Shamsan, "Statistical Analysis of 5G Channel Propagation using MIMO and Massive MIMO Technologies," Engineering, Technology & Applied Science Research, vol. 11, no. 4, pp. 7417–7423, Aug. 2021, https://doi.org/10.48084/etasr.4264.
G. Immadi, N. K. Majji, M. V. Narayana, and A. Navya, "Comparative Analysis of Pass Band Characteristics of a Rectangular Waveguide with and Without a Dielectric Slab," International Journal of Engineering and Advanced Technology, vol. 8, no. 6, pp. 1209–1211, Apr. 2019.
G. Immadi, M. V. Narayana, A. Navya, Y. D. S. Sairam, and K. Shrimanth, "Design and Analysis of Micro strip Circular Ring Band Stop Filter," International Journal of Engineering and Advanced Technology, vol. 8, no. 4, pp. 788–790.
G. Immadi, M. V. Narayana, A. Navya, M. S. V. S. L. Sreejasree, D. S. Krishna, and V. S. Sindhu, "Analysis of Z-Shaped Microstrip Bandpass Filter at Ku Band," International Journal of Advanced Science and Technology, vol. 29, no. 5, pp. 8341–8344, May 2020.
G. Immadi, M. V. Narayana, A. Navya, M. S. V. S. L. Sreejasree, D. S. Krishna, and V. S. Sindhu, "Design of Circular Ring Resonator Microstrip Band Pass Filter at Ku Band," Journal of Critical Reviews, vol. 7, no. 13, pp. 465–467, Jun. 2020, https://doi.org/10.31838/jcr.07.13.81.
G. Imamdi, M. V. Narayan, A. Navya, and A. Roja, "Reflector array antenna design at millimetric (mm) band for on the move applications," ARPN Journal of Engineering and Applied Sciences, vol. 13, no. 1, pp. 352–359, 2018.
Downloads
How to Cite
License
Copyright (c) 2021 N. Ambati, G. Immadi, M. V. Narayana, K. R. Bareddy, M. S. Prapurna, J. Yanapu
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.