The Effect of Displacement Mode of Rigid Retaining Walls on Shearing Bands by Active Earth Pressure

Authors

  • A. Sekkel Department of Civil Engineering & Hydraulic, Moulay Tahar University, Algeria
  • M. Meghachou Department of Civil Engineering, Djillali Liabes University of Sidi Bel Abbes, Algeria
Volume: 3 | Issue: 5 | Pages: 526-531 | October 2013 | https://doi.org/10.48084/etasr.374

Abstract

This work treats the physical modeling of failure mechanisms by active earth pressure. This last is developed by retaining wall movement. A lot of research showed that wall displacement has a significant effect on active earth pressure. A good comprehension of active earth pressure phenomenon and its failure mechanisms help us to better conceive retaining walls. The conception of a small-scale model allowed the realization of active earth pressure tests, while displacing the mobile wall toward the outside of the massif. The studied material is that of Schneebeli; light two-dimensional material made of cylindrical plastic rollers, simulating granular non-cohesive soil. The evolution of shearing zones under continuous and discontinuous displacement modes of mobile walls by correlation pictures allows the investigation of the localization of deformations and failure mechanisms.

Keywords:

small-scale model, active earth pressure, continuous mode, discontinuous mode, shearing band.

Downloads

Download data is not yet available.

References

K., Terzaghi, "Large retaining wall tests", Engineering News Record Vol. 112, pp. 136-140, 1934

M. Matsuo, S. Kenmochi, H. Yagi, “Experimental study on earth pressure of retaining wall by field tests”, Soils and Foundations, Vol. 18, No. 3, pp. 27–41, 1978 DOI: https://doi.org/10.3208/sandf1972.18.3_27

M. A. Sherif, Y. S. Fang, R. I. Sherif, “Ka and K0 behind rotating and non-yielding walls”, Journal of Geotechnical Engineering Vol. 110, No. 1, pp. 41-56 , 1984 DOI: https://doi.org/10.1061/(ASCE)0733-9410(1984)110:1(41)

Y. S. Fang , T. J. Chen, B. F. Wu, Passive earth pressures with various wall movements, Journal of Geotechnical Engineering, Vol. 120, No. 8, pp. 1307-1323, 1994 DOI: https://doi.org/10.1061/(ASCE)0733-9410(1994)120:8(1307)

M. Oda, J. Konishi, S. Nemat-Nasser, “Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling”, Mechanics of Materials, Vol. 1, pp. 269-283, 1982 DOI: https://doi.org/10.1016/0167-6636(82)90027-8

M. Uesugi, H. Kishida, Y. Tsubakihara, “Behaviour of Sand Particles in Sand-Steel Friction”, Soils and Foundations, Vol. 28, No. 1, pp. 107–118, 1988 DOI: https://doi.org/10.3208/sandf1972.28.107

J. Tejchman, “Scherzonenbildung und Verspannungseffekte in Granulaten unter Berucksichtigung von Korndrehungen”, Publication Series of the Institute of Soil and Rock Mechanics, University Karlsruhe, Vol. 117, pp. 1–236, 1989

J. Geng, R. R. Hartley, D. Howell, R. P. Behringer, G. Reydellet, E. Clement, “Fluctuations and instabilities in granular materials” in: Bifurcations and Instabilities in Geomechanics, (J. Labuz and A. Drescher, eds.), Swets and Zeitlinger, 79–108, 2003

I. Vardoulakis, Shear band inclination and shear modulus of sand in biaxial tests”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 4, No. 2, pp. 103–119, 1980 DOI: https://doi.org/10.1002/nag.1610040202

F. Tatsuoka, M. Okahara, T. Tanaka, K. Tani, T. Morimoto, M. S. Siddiquee, “Progressive failure and particle size effect in bearing capacity of footing on sand”, Proc. of the ASCE Geotechnical Engineering Congress, Vol. 27, No. 2, pp. 788–802, 1991

F. Tatsuoka, M. S. Siddiquee, T. Yoshida, C. S. Park, Y. Kamegai, S. Goto, Y. Kohata, “Testing methods and results of element tests and testing conditions of plane strain model bearing capacity tests using air-dried dense Silver Buzzard Sand”, Internal Report of the University of Tokyo, 1–129, 1994

F. Tatsuoka, S. Goto, T. Tanaka, K. Tani, Y. Kimura, “Particle size effects on bearing capacity of footing on granular material”, in: Deformation and Progressive Failure in Geo-mechanics, (A. Asaoka, T. Adachi, and F. Oka, eds.), Pergamon, pp. 133–139, 1997

J. Desrues, W. Hammad, “Shear banding dependency on mean pressure level in sand”, Proc. Int. Workshop on Numerical Methods for Localization and Bifurcation of Granular Bodies, (E. Dembicki et al, eds.), Gdańsk, Poland, pp. 57–67, 1989

C. A. Coulomb, Essai sur une application, Science et Industrie, Paris, 1775

G. H. Darwin, “On the horizontal thrust of a mass of sand”, Proc. Inst. Civ. Eng., Vol. 71, pp. 350–378, 1883 DOI: https://doi.org/10.1680/imotp.1883.21802

J. R. F. Arthur, Strains and lateral force in sand, PhD Thesis, University of Cambridge, 1962

R. G. James, Stress and strain fields in sand, PhD Thesis, University of Cambridge, 1965

J. B. A. Lucia, Passive earth pressure and failure in sand, Research Report, University of Cambridge, 1966

J. May, A Pilot Project on the cutting of soils, Research Report, University of Cambridge, 1967

P. L. Bransby, Stress and strain in sand caused by rotation of a model wall, PhD Thesis,University of Cambridge, 1968

A. Adeosun, Lateral forces and failure patterns in the cutting of sands, Research Project, University of Cambridge, 1968

J. A. Lord, Stress and strains in an earth pressure problem, PhD Thesis, University of Cambridge, 1969

I. Smith, Stress and strain in a sand mass adjacent to a model wall, PhD Thesis, University of Cambridge, 1972

G. W. E. Milligan, The behaviour of rigid and flexible retaining walls in sand, PhD Thesis, University of Cambridge, 1974

D. Leśniewska, Analysis of shear band pattern formation in soil. Habilitation, Institute of Hydro-Engineering of the Polish Academy of Sciences, Gdańsk, Poland, 2000

D. Leśniewska, Z. Mróz, “Study of evolution of shear band systems in sand retained by flexible wall”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 25, No. 9, pp. 909–932, 2001 DOI: https://doi.org/10.1002/nag.160

D. Leśniewska, Z. Mróz, “Shear bands in soil deformation processes”, in: Bifurcations and Instabilities in Geomechanics (J. Labuz and A. Drescher, eds.), Swets and Zeitlinger, pp. 109–119, 2003 DOI: https://doi.org/10.1201/9781439833438.ch9

J. Tejchman, “Patterns of shear zones in granular materials within a polar hypoplastic continuum”, Acta Mechanica, Vol. 155, No. 1–2, pp. 71–95, 2002 DOI: https://doi.org/10.1007/BF01170841

P. Vacher, S. Dumoulin, F. Morestin, S. Mguil-Touchal, “Bidimensional strain measurement using digital images”, Journal of Mechanical Engineering Science, Vol. 213, No. 8, pp. 811-817, 1999 DOI: https://doi.org/10.1243/0954406991522428

F. Darve, “Manuel de rhéologie des géomatériaux”, Edition de l’association Amicale des Ingénieurs Anciens Elèves de l’Ecole Nationale des Ponts et Chaussées, 1987

J. Lanier, P. C. Bonnet, “Experimental study of displacements and rotations of grains in 2D-granular media”, Meeting TC13, Comitee on mechanics of granular materials (ISSMFE), Birmingham, 1993

G. Schneebeli, “Une mécanique pour les terres sans cohésion”, Compte rendus des séances de l'Académie des Sciences. Paris, Vol. 243, pp. 2647-2673, 1956

C. Coulet, “Etude du profil optimal des murs-voiles de soutenement”, Thèse, Lyon : INSA de Lyon, 1977

R. Albert, A. Houy, J. Raud, G. Verdier, “Etude à l’aide de modèles réduits de Datardeaux Massifs”, Proc. of 5 Congrès Européen, Madrid, Vol. 1, pp. 231-239, 1972

J. Verdeyen, V. Roisin, “Sollicitation des écrans souples de soutènement”, in : Proc. Of 5 Congrès Int. , Paris, Vol. 1, pp. 422-426, 1961

M. Oda, J. Konichi, S. Nemat-Nasser, “Experimental micromechanical evaluation of the strength of granular materials: effects of particle rolling”, in. : Jenkins and Satake Eds. Mechanics of Granular Materials: New Models and Constitutive Relations, pp. 21-30, 1983

R. Gourves, M. Mezghani “Micromécanique des milieux granulaires, approche expérimentale utilisant le modèle de Schneebeli”, Revue Française de Géotechnique, Vol. 42, pp. 23-34, 1988 DOI: https://doi.org/10.1051/geotech/1988042023

H. Joer, J. Lanier, J. Desrues, E. Flavigny, “1γ2ɛ: A new shear apparatus to study the behavior of granular materials”, Geotechnical Testing Journal, Vol. 15, No 2, pp. 129-137, 1992 DOI: https://doi.org/10.1520/GTJ10235J

G. Tratapel, “Contribution à l'étude du comportement mécanique d'un milieu analogique bidimensionnel”, Thèse: Génie Civil : Université Scientifique et Médicale et l'Institut National Polytechnique de Grenoble, 1977

A. Misra, H. Jiang, “Measured kinematic fields in the biaxial shear of granular materials”, Computers and Geotechnics, Vol. 20, No. 3-4, pp. 267-285, 1997 DOI: https://doi.org/10.1016/S0266-352X(97)00006-2

R. Kastner, “Excavations profondes en site urbain”, Thèse Génie Civil, Lyon : INSA de Lyon, 1982

Downloads

How to Cite

[1]
A. Sekkel and M. Meghachou, “The Effect of Displacement Mode of Rigid Retaining Walls on Shearing Bands by Active Earth Pressure”, Eng. Technol. Appl. Sci. Res., vol. 3, no. 5, pp. 526–531, Oct. 2013.

Metrics

Abstract Views: 695
PDF Downloads: 334

Metrics Information

Most read articles by the same author(s)