Fabrication of Cu4SnS4 Thin Films: Α Review

Authors

  • S. M. Ho Center for American Education, INTI International University, Malaysia
Volume: 10 | Issue: 5 | Pages: 6161-6164 | October 2020 | https://doi.org/10.48084/etasr.3663

Abstract

Ternary compounds such as Cu4SnS4 thin films can be deposited onto glass substrates by various deposition methods: electrodeposition, chemical bath deposition, successive ionic layer adsorption and reaction, and evaporation techniques. Cu4SnS4 films could be used in solar cell applications because of their suitable band gap and large absorption coefficient. This paper reviews previous researches on Cu4SnS4 thin films. X-ray diffraction showed that the obtained films are orthorhombic in structure and polycrystalline in nature. Cu4SnS4 films exhibited p-type electrical conductivity and indicated band gap values in the range of 0.93 to 1.84eV.

Keywords:

copper tin sulfide, thin films, solar cells, band gap, semiconductor

Downloads

Download data is not yet available.

References

G. M. Mikheev, V. Ya. Kogai, T. N. Mogileva, K. G. Mikheev, A. S. Saushin, and Y. P. Svirko, "Photon helicity driven surface photocurrent in CuSe films," Applied Physics Letters, vol. 115, no. 6, Aug. 2019, Art. no. 061101. DOI: https://doi.org/10.1063/1.5109069

V. E. González-Flores, R. N. Mohan, R. Ballinas-Morales, M. T. S. Nair, and P. K. Nair, "Thin film solar cells of chemically deposited SnS of cubic and orthorhombic structures," Thin Solid Films, vol. 672, pp. 62-65, Feb. 2019. DOI: https://doi.org/10.1016/j.tsf.2018.12.044

L. Guo et al., "Improved stability and efficiency of CdSe/Sb2Se3 thin-film solar cells," Solar Energy, vol. 188, pp. 586-592, Aug. 2019. DOI: https://doi.org/10.1016/j.solener.2019.06.042

Y. Zhang, X. Xu, and X. Fang, "Tunable self-powered n-SrTiO3 photodetectors based on varying CuS-ZnS nanocomposite film (p-CuZnS, p-CuS, and n-ZnS)," InfoMat, vol. 1, no. 4, pp. 542-551, 2019. DOI: https://doi.org/10.1002/inf2.12035

S. Jagtap, P. Chopade, S. Tadepalli, A. Bhalerao, and S. Gosavi, "A review on the progress of ZnSe as inorganic scintillator," Opto-Electronics Review, vol. 27, no. 1, pp. 90-103, Mar. 2019. DOI: https://doi.org/10.1016/j.opelre.2019.01.001

H. S. Min, A. Kassim, L. Kian, and T. W. Tee, "Investigation of morphological properties of the copper sulfide films in acidic media based on atomic force microscopy," International Research Journal of Chemistry, vol. 3, pp. 62-68, Oct. 2013.

T. Daniel, S. T. Nishanthi, K. Mohanraj, and G. Sivakumar, "Influence of film thickness variation on the photo electrochemical cell performances of Ag3SbS3 thin films," Vacuum, vol. 161, pp. 138-142, Mar. 2019. DOI: https://doi.org/10.1016/j.vacuum.2018.12.031

K. Liu, Y. Xu, Q. Sun, H. Li, and H. Wu, "Characterization of structure and physical properties of CuInSe2 films prepared from chlorides under different conditions," Results in Physics, vol. 12, pp. 766-770, Mar. 2019. DOI: https://doi.org/10.1016/j.rinp.2018.12.012

M. H. Sayed, E. V. C. Robert, P. J. Dale, and L. Gütay, "Cu2SnS3 based thin film solar cells from chemical spray pyrolysis," Thin Solid Films, vol. 669, pp. 436-439, Jan. 2019. DOI: https://doi.org/10.1016/j.tsf.2018.11.002

S. Ning, G. Feng, H. Zhang, W. Zhang, S. Dai, and S. Zhou, "Fabrication, structure and optical application of Fe2+:ZnSe nanocrystalline film," Optical Materials, vol. 89, pp. 473-479, Mar. 2019. DOI: https://doi.org/10.1016/j.optmat.2019.02.002

K.-C. Huang, C.-L. Liu, P.-K. Hung, and M.-P. Houng, "Effect of [Al] and [In] molar ratio in solutions on the growth and microstructure of electrodeposition Cu(In,Al)Se2 films," Applied Surface Science, vol. 273, pp. 723-729, May 2013. DOI: https://doi.org/10.1016/j.apsusc.2013.02.121

J. López-García et al., "CuIn1−xAlxSe2 thin film solar cells with depth gradient composition prepared by selenization of evaporated metallic precursors," Solar Energy Materials and Solar Cells, vol. 132, pp. 245-251, Jan. 2015. DOI: https://doi.org/10.1016/j.solmat.2014.09.003

M. Dergacheva and K. Urazov, "Electrodeposition of CuInxGa1−xSe2 thin films from sulfosalicylic acid," Electrochimica Acta, vol. 107, pp. 120-125, Sep. 2013. DOI: https://doi.org/10.1016/j.electacta.2013.06.011

M. A. Hossain et al., "Synthesis of Cu(In,Ga)(S,Se)2 thin films using an aqueous spray-pyrolysis approach, and their solar cell efficiency of 10.5%," Journal of Materials Chemistry A, vol. 3, no. 8, pp. 4147-4154, Feb. 2015.

X. Lin et al., "11.3% efficiency Cu(In,Ga)(S,Se)2 thin film solar cells via drop-on-demand inkjet printing," Energy & Environmental Science, vol. 9, no. 6, pp. 2037-2043, Jun. 2016.

S. Lee et al., "RGB-Colored Cu(In,Ga)(S,Se)2 Thin-Film Solar Cells with Minimal Efficiency Loss Using Narrow-Bandwidth Stopband Nano-Multilayered Filters," ACS Applied Materials & Interfaces, vol. 11, no. 10, pp. 9994-10003, Mar. 2019.

G. S. D. Babu et al., "Low-cost hydrothermal synthesis and characterization of pentanary Cu2ZnxNi1−xSnS4 nanoparticle inks for thin film solar cell applications," Materials Science in Semiconductor Processing, vol. 63, pp. 127-136, Jun. 2017. DOI: https://doi.org/10.1016/j.mssp.2017.02.015

Y. Cui et al., "Fabrication of CIGSSe Thin Film Solar Cells with Colloidal Synthesized CuIn0.7Ga0.3S2 Nanocrystals," Journal of Nanoscience and Nanotechnology, vol. 20, no. 4, pp. 2578-2583, Apr. 2020.

H. Soonmin and T. J. S. Anand, "A Review of Chalcogenide Thin Films for Solar Cell Applications," Indian Journal of Science and Technology, vol. 8, no. 12, 2015. DOI: https://doi.org/10.17485/ijst/2015/v8i12/67499

A. C. Lokhande et al., "Binder-free novel Cu4SnS4 electrode for high-performance supercapacitors," Electrochimica Acta, vol. 284, pp. 80-88, Sep. 2018. DOI: https://doi.org/10.1016/j.electacta.2018.07.170

D. Avellaneda, M. T. S. Nair, and P. K. Nair, "Cu2SnS3 and Cu4SnS4 Thin Films via Chemical Deposition for Photovoltaic Application," Journal of The Electrochemical Society, vol. 157, no. 6, Apr. 2010. DOI: https://doi.org/10.1149/1.3384660

Y. Chen et al., "Strong quantum confinement effect in Cu4SnS4 quantum dots synthesized via an improved hydrothermal approach," Journal of Alloys and Compounds, vol. 672, pp. 204-211, Jul. 2016. DOI: https://doi.org/10.1016/j.jallcom.2016.02.135

M. T. S. Nair, C. L. z-Mata, O. GomezDaza, and P. K. Nair, "Copper tin sulfide semiconductor thin films produced by heating SnS-CuS layers deposited from chemical bath," Semiconductor Science and Technology, vol. 18, no. 8, pp. 755-759, Jul. 2003. DOI: https://doi.org/10.1088/0268-1242/18/8/306

N. Nagasako, A. Suzumura, and R. Asahi, "Correlation between thermal-vibration-induced large displacement of Cu atoms and phase transition in Cu4SnS4: First-principles investigation," Acta Materialia, vol. 166, pp. 37-46, Mar. 2019. DOI: https://doi.org/10.1016/j.actamat.2018.11.058

U. Chalapathi, B. Poornaprakash, and S.-H. Park, "Enhanced mobility of Cu4SnS4 films prepared by annealing SnS-CuS stacks in a graphite box," Solar Energy, vol. 155, pp. 336-341, Oct. 2017. DOI: https://doi.org/10.1016/j.solener.2017.06.051

V. P. G. Vani, M. V. Reddy, and K. T. R. Reddy, "Thickness-Dependent Physical Properties of Coevaporated Cu4SnS4 Films," International Scholarly Research Notices, Jul. 2013, Art. no. 142029. DOI: https://doi.org/10.1155/2013/142029

Q. Chen et al., "Study on the photovoltaic property of Cu4SnS4 synthesized by mechanochemical process," Optik, vol. 125, no. 13, pp. 3217-3220, Jul. 2014.

H. Guan, H. Shen, C. Gao, and X. He, "The influence of annealing atmosphere on the phase formation of Cu-Sn-S ternary compound by SILAR method," Journal of Materials Science: Materials in Electronics, vol. 24, no. 9, pp. 3195-3198, Sep. 2013.

U. Chalapathi, B. Poornaprakash, and S.-H. Park, "Two-stage processed Cu4SnS4 thin films for photovoltaics - Effect of (N2 + S2) pressure during annealing," Thin Solid Films, vol. 660, pp. 236-241, Aug. 2018. DOI: https://doi.org/10.1016/j.tsf.2018.06.008

A. Kassim et al., "Effects of deposition potential on Cu4SnS4 thin films prepared by electrodeposition technique," The Arabian Journal for Science and Engineering, vol. 35, no. 1A, pp. 83-92, Jan. 2010.

K. Anuar et al., "Effects of Bath Temperature on the Electrodeposition of Cu4SnS4 Thin Films," Journal of Applied Sciences Research, vol. 4, no. 12, pp. 1701-1707, Dec. 2008.

A. Kassim, S. Nagalingam, Z. Kuang, A. Sharif, T. W. Tee, and H. S. Min, "Influence of complexing agent (Na2EDTA) on chemical bath deposited Cu4SnS4 thin films," Bulletin of the Chemical Society of Ethiopia, vol. 24, no. 2, May 2010. DOI: https://doi.org/10.4314/bcse.v24i2.54755

A. Kassim, T. W. Tee, A. H. Abdullah, S. Nagalingam, and H. S. Min, "Deposition and characterization of Cu4SnS4 thin films by chemical bath deposition method," Macedonian Journal of Chemistry and Chemical Engineering, vol. 29, no. 1, pp. 97-103, Jun. 2010. DOI: https://doi.org/10.20450/mjcce.2010.178

A. Kassim, Z. Kuang, A. Sharif, T. W. Tee, H. S. Min, and S. Nagalingam, "Preparation and studies of chemically deposited Cu4SnS4 thin films in the presence of complexing agent Na2EDTA," Indian Journal of Engineering and Materials Sciences, vol. 17, no. 4, Aug. 2010.

A. Choudhury et al., "New insights into the structure, chemistry, and properties of Cu4SnS4," Journal of Solid State Chemistry, vol. 253, pp. 192-201, Sep. 2017. DOI: https://doi.org/10.1016/j.jssc.2017.05.033

V. R. Minnam Reddy et al., "Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films and their photovoltaic performance," Journal of Industrial and Engineering Chemistry, vol. 76, pp. 39-74, Aug. 2019. DOI: https://doi.org/10.1016/j.jiec.2019.03.035

Downloads

How to Cite

[1]
Ho, S.M. 2020. Fabrication of Cu4SnS4 Thin Films: Α Review. Engineering, Technology & Applied Science Research. 10, 5 (Oct. 2020), 6161–6164. DOI:https://doi.org/10.48084/etasr.3663.

Metrics

Abstract Views: 1121
PDF Downloads: 741

Metrics Information

Most read articles by the same author(s)