Experimental Study of the Lateral Spreading Pressure Acting on a Pile Foundation During Earthquakes
Abstract
In the seismic design of pile foundations, the safety of the pile is assessed by considering the inertial force during an earthquake and subgrade reaction as external forces against the pile. The amount of deformation of the pile must be limited to a small value to maintain the safety of the pile. In the event of a large earthquake, quay walls and seawalls are subjected to lateral spreading because of the influence of biased seaward earth pressure. The amount of lateral spreading is considerably larger than what can be expected in a typical pile seismic design and may reach several meters. In this study, loading experiments that reproduced lateral spreading were conducted to evaluate the lateral spreading pressure acting on a pile when considerably large lateral spreading occurred. The experiment results showed that lateral spreading pressure depended on the ratio of pile spacing to pile diameter while the peak value of lateral spreading pressure was larger than the one assumed in practical design.
Keywords:
pile foundation, lateral spreading pressure, subgrade reactionDownloads
References
American Association of State Highway and Transportation Officials, AASHTO LRFD Bridge design specifications, Seventh Edition, with 2015 Interim Revisions, AASHTO, 2014
Japan Road Association, Specifications for highway bridges, Part 4, substructures, ver. 2012, Maruzen Co., Ltd., 2016
International Navigation Association (PIANC), Seismic design guidelines for port structures, A.A. Balkema Publishers, 2001 DOI: https://doi.org/10.1201/NOE9026518188
G. Mondal, D. C. Rai, “Performance of harbour structures in Andaman Islands during 2004 Sumatra earthquake”, Engineering Structurs, Vol. 30, No. 1, pp. 174–182, 2008 DOI: https://doi.org/10.1016/j.engstruct.2007.03.015
R. A. Green, S. M. Olson, R. Brady, B. R. Cox, G. J. Rix, E. Rathje, J. Bachhuber, J. French, S. Lasley, N. Martin, “Geotechnical aspects of failures at Port-au-Prince seaport during the 12 January 2010 Haiti earthquake”, Earthquake Spectra, Vol. 27, No. S1, pp. S43–S65, 2011 DOI: https://doi.org/10.1193/1.3636440
S. Werner, N. McCullough, W. Bruin, A. Augustine, G. Rix, B. Crowder, J. Tomblin, “Seismic performance of Port de Port-au-Prince during the Haiti Earthquake and post-earthquake restoration of cargo throughput”, Earthquake Spectra, Vol. 27, No. S1, pp. S387–S410, 2011 DOI: https://doi.org/10.1193/1.3638716
T. Sugano, A. Nozu, E. Kohama, K. Shimosako, Y. Kikuchi, “Damage to coastal structures”, Soils and Foundations, Vol. 54, No. 4, pp. 883–901, 2014 DOI: https://doi.org/10.1016/j.sandf.2014.06.018
O. Ozutsumi, Y. Tamari, Y. Oka, K. Ichii, S. Iai, Y. Umeki, “Modeling of soil-pile interaction subjected to soil liquefaction in plane strain analysis”, 38th Annual Conference of Japan Geotechnical Society, Akita, Japan, July 2-4, 2003 (in Japanese)
S. Miwa, O. Ozutsumi, Y. Tamari, Y. Oka, S. Iai, S. Tagawa, “Two-dimensional analysis of horizontal cross section for soil-pile interaction in liquefied ground”, 38th Annual conference of Japan Geotechnical Society, Akita, Japan, July 2-4, 2003 (in Japanese)
S. Iai, “Seismic analysis and performance of retaining structures”, Geotechnical Earthquake Engineering and Soil Dynamics III, Seattle, United States, August 3-6, 1998
A. Takahashi, J. Takemura, “Liquefaction-induced large displacement of pile-supported wharf”, Soil Dynamics and Earthquake Engineering, Vol. 25, pp. 811–825, 2005 DOI: https://doi.org/10.1016/j.soildyn.2005.04.010
G. Li, R. Motamed, “Finite element modeling of soil-pile response subjected to liquefaction induced lateral spreading in a large-scale shake table experiment”, Soil Dynamics and Earthquake Engineering, Vol. 92, pp. 573–584, 2017 DOI: https://doi.org/10.1016/j.soildyn.2016.11.001
W. Chang, J. Chen, H. Ho, Y. Chiu, “In Situ Dynamic Model Test for Pile-Supported Wharf in Liquefied Sand”, Geotechnical Testing Journal, Vol. 33, No. 3, pp. 212-224, 2010 DOI: https://doi.org/10.1520/GTJ102425
L. Su, L. Tang, X. Ling, C. Liu, X. Zhang, “Pile response to liquefaction-induced lateral spreading: a shake-table investigation”, Soil Dynamics and Earthquake Engineering, Vol. 82, pp. 196–204, 2016 DOI: https://doi.org/10.1016/j.soildyn.2015.12.013
P. Yin, W. He, ZJ. Yang, “A Simplified Nonlinear Method for a Laterally Loaded Pile in Sloping Ground”, Advances in Civil Engineering, Vol. 2018, Article ID 5438618, 2018 DOI: https://doi.org/10.1155/2018/5438618
S. Iai, “Similitude for Shaking table test on Soil-Structure-Fluid Model in 1g Gravitational Field”, Soil and Foundations, Vol. 29, No. 1, pp. 105-118, 1989 DOI: https://doi.org/10.3208/sandf1972.29.105
Ports and Harbours Bureau, Ministry of Land, Infrastructure, Transport and Tourism, National Institute for Land and Infrastructure Management, Port and Airport Research Institute, Technical standards and commentaries for port and harbour facilities in Japan, The Overseas Coastal Area Developement Institute of Japan, 2009
T. Morita, S. Iai, H. Liu, K. Ichii, Y. Sato, Simplified method to determine parameter of FLIP, Technical Note of the Port and Harbor Research Institute, No.869, 1997 (in Japanese)
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.