Magnetic Field Influence on The Properties of Water Treated by Reverse Osmosis


  • M. O. Karkush Civil Engineering Department, University of Baghdad, Iraq
  • M. D. Ahmed Civil Engineering Department, University of Baghdad, Iraq
  • S. M. A. Al-Ani Civil Engineering Department, University of Baghdad, Iraq
Volume: 9 | Issue: 4 | Pages: 4433-4439 | August 2019 |


The current study is focused on reviewing the rapid growing of magnetic water use in different science fields and in measuring the influence of several intensities of magnetization on the chemical and electrical properties of tap water treated by reverse osmosis. This work includes water circulation for 24h in magnetic fields of intensities 500, 1000, 1500, and 2000G. The magnetization of water increases some ions in the water such as Mg, K, Na, Cl, and SiO2and decreases Ca and SO3. The main application of magnetic water is the improvement of the geotechnical properties of soft and swelling soil through precipitation of calcite in pores which increases the bond between soil particles and the strength of the soil.


magnetic field, water, cheimical properties, electric properties, reverse osmosis


Download data is not yet available.


Y. Wang, H. Wei, Z. Li, “Effect of magnetic field on the physical properties of water”, Results in Physics, Vol. 8, pp. 262-267, 2018 DOI:

D. R. Ambashtaa, M. Sillanpaa, “Water purification using magnetic assistance: A review”, Journal of Hazardous Materials, Vol. 180, No. 1-3, pp. 38-49, 2010 DOI:

M. Iwasaka, S. Ueno, “Structure of water molecules under 14 T magnetic field”, Journal of Applied Physics, Vol. 83, No. 11, pp. 6459-6461, 1998 DOI:

S. H. Lee, M. Takeda, K Nishigaki, “Gas–Liquid Interface Deformation of Flowing Water in Gradient Magnetic Field Influence of Flow Velocity and NaCl Concentration”, Japanese Journal of Applied Physics, Vol. 42, No. 4, pp. 1828-1833, 2003 DOI:

Y. I. Cho, S. H. Lee, “Reduction of the surface tension of water due to physical water treatment for fouling control in heat exchangers”, International Communications in Heat and Mass Transfer, Vol. 32, No. 1-2, pp. 1-9, 2005 DOI:

N. S. Zaidi, J. Sohaili, K. Muda, M. Sillanpaa, “Magnetic field application and its potential in water and wastewater treatment systems”, Separation & Purification Reviews, Vol. 43, No. 3, pp. 206-240, 2014 DOI:

B. S. K. Reddy, V. G. Ghorpade, H. S. Rao, “Influence of magnetic water on strength properties of concrete”, Indian Journal of Science and Technology, Vol. 7, No. 1, pp. 14–18, 2014 DOI:

H. Al Najm, Effect of Ιrrigation Water Salinity and Magnetization and Moisture Depletion in Some Physical Properties of Soil Growth and Yield of Potatoes, PhD Thesis, University Of Anbar, 2014

S. Rajput, C. U. Pittman Jr., D. Mohan, “Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water”, Journal of Colloid and Interface Science, Vol. 468, pp. 334-346, 2016 DOI:

M. Sheikholeslami, M. M. Rashidi, T. Hayat, D. D. Ganji, “Free convection of magnetic nanofluid considering MFD viscosity effect”, Journal of Molecular Liquids, Vol. 218, pp. 393–399, 2016 DOI:

M. Hachicha, B. Kahlaoui, N. Khamassi, E. Misle, O. Jouzdan, “Effect of electromagnetic treatment of saline water on soil and crops”, Journal of the Saudi Society of Agricultural Sciences, Vol. 17, No. 2, pp. 154-162, 2018 DOI:

V. Zlotopolsk, “The impact of magnetic water treatment on salt distribution in a large unsaturated soil column”, International Soil and Water Conservation Research, Vol. 5, No. 4, pp. 253-257, 2017 DOI:

A. Andrianov, E. Orlov, “The Assessment of Magnetic Water Treatment on Formation Calcium Scale on Reverse Osmosis Membranes”, MATEC Web of Conferences, Vol. 178, No. 2, Article ID 09001, 2018 DOI:

E. Esmaeilnezhad, H. J. Choi, M. Schaffie, M. Gholizadeh, M. Ranjbar, “Characteristics and applications of magnetized water as a green technology”, Journal of Cleaner Production, Vol. 161, pp. 908-921, 2017 DOI:

J. Svoboda, “A realistic description of the process of high-gradient magnetic separation”, Minerals Engineering, Vol. 14, No. 11, pp. 1493–1503, 2001 DOI:

A. Ditsch, S. Lindenmann, P. E. Laibinis, D. I. C. Wang, T. A. Hatton, “High-gradient magnetic separation of magnetic nanoclusters”, Industrial & Engineering Chemistry Research, Vol. 44, No. 17, pp. 6824-6836, 2005 DOI:

H. Okada, K. Mitsuhashi, T. Ohara, E. R. Whitby, H. Wada, “Computational fluid dynamics simulation of high gradient magnetic separation”, Separation Science and Technology, Vol. 40, No. 7, pp. 1567-1584, 2005 DOI:

M. Sarikaya, T. Abbasov, M. Erdemoglu, “Some aspects of magnetic filtration theory for removal of fine particles from aqueous suspensions”, Journal of Dispersion Science and Technology, Vol. 27, No. 2, pp. 193-198, 2006 DOI:

L. Wang, J. Li, Y. Wang, L. Zhao, “Preparation of nanocrystalline Fe3-xLaxO4 ferrite and their adsorption capability for congo red”, Journal of Hazardous Materials, Vol. 196, pp. 342–349, 2011 DOI:

S. Liu, F. Yang, F. Meng, H. Chen, Z. Gong, “Enhanced anammox consortium activity for nitrogen removal: Impacts of static magnetic field”, Journal of Biotechnology, Vol. 138, No. 3-4, pp. 96-102, 2008 DOI:

A. Tomska, L. Wolny, “Enhancement of biological wastewater treatment by magnetic field exposure”, Desalination, Vol. 222, No. 1-3, pp. 368-373, 2008 DOI:

B. R. Heywood, S. Rajam, S. Mann, “Oriented crystallization of CaCO3 under compressed monolayers. Part 2.-Morphology, structure and growth of immature crystals”, Journal of the Chemical of Society, Faraday Transactions, Vol. 87, No. 5, pp. 735-743, 1991 DOI:

S. R. Dickinson, K. M. McGrath, “Aqueous precipitation of calcium carbonate modified by hydroxyl-containing compounds”, Crystal Growth & Design, Vol. 4, No. 6, pp. 1411-1418, 2004 DOI:

J. S. Park, J. H. Yang, D. H. Kim, D. H. Lee, “Degradability of expanded starch/PVA blends prepared using calcium carbonate as the expanding inhibitor”, Journal of Applied Polymer Science, Vol. 93, No. 2, pp. 911-919, 2004 DOI:

C. Y. Tai, C. K. Wu, M. C. Chang, “Effects of magnetic field on the crystallization of CaCO3 using permanent magnets”, Chemical Engineering Science, Vol. 63, No. 23, pp. 5606-5612, 2008 DOI:

F. Alim, M. M. Tlili, M. B. Amor, G. Maurin, C. Gabrielli, “Effect of magnetic water treatment on calcium carbonate precipitation: Influence of the pipe material”, Chemical Engineering and Processing: Process Intensification, Vol. 48, No. 8, pp. 1327-1332, 2009 DOI:

J. Bogatin, N. P. Bondarenko, E. Z. Gak, E. E. Rokhinson, I. P. Ananyev, “Magnetic treatment of irrigation water: Experimental results and application conditions”, Environmental Science and Technology, Vol. 33, No. 8, pp. 1280-1285, 1999 DOI:

J. D. Donaldson, “Magnetic treatment of fluids-preventing scale”, Finishing, Vol. 12, No. 1, 1988

Y. Wang, J. Babchin, L. T. Chernyi, R. S. Chow, R. P. Sawatzky, “Rapid onset of calcium carbonate crystallization under the influence of a magnetic field”, Water Reseasch, Vol. 31, No. 2, pp. 346-350, 1997 DOI:

K. Higashitani, K. Okuhara, S. Hatade, “Effects of magnetic fields on stability of non-magnetic ultrafine colloidal particles”, Journal of Colloid and Interface Science, Vol. 152, No. 1, pp. 125-131, 1992 DOI:

J. Jung, B. Sanji, S. Godbole, S. Sofer, “Biodegradation of phenol: A comparative study with and without applying magnetic fields”, Journal of Chemical Technology and Biotechnology, Vol. 56, No. 1, pp. 73-76, 1993 DOI:

T. Utsunomiya, Y. I. Yamane, M. Watanabe, K. Sasaki, “Stimulation of prophyrin production by application of an external magnetic field to a photosynthetic bacterium, rhodobacter sphaeroides”, Journal of Bioscience and Bioengineering, Vol. 95, No. 4, pp. 401-404, 2003 DOI:

Z. Y. Li, S. Y. Guo, L. Li, M. Y. Cai, “Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor”, Bioresource Technology, Vol. 98, No. 3, pp. 700-705, 2007 DOI:

H. Salehizadeh, M. C. V. Loosdrecht, “Production of polyhydroxyalkanoates by mixed culture: Recent trends and biotechnological importance”, Biotechnology Advances, Vol. 22, No. 3, pp. 261-279, 2004 DOI:

M. S. Kumar, S. N. Mudliar, M. K. R. Konduri, T. Chakrabarti, “Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant”, Bioresource Technology, Vol. 95, No. 3, pp. 327-330, 2004 DOI:

D. Dionisi, G. Carucci, M. P. Papini, C. Riccardi, M. Majone, F. Carrasco, “Olive oil mill effluents as a feedstock for production of biodegradable polymers”, Water Research, Vol. 39, No. 10, pp. 2076-2084, 2005 DOI:

S. Bengtsson, A. Werker, M. Christensson, T. Welander, “Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater”, Bioresource Technology, Vol. 99, No. 3, pp. 509-516, 2008 DOI:

J. Yu, J. Wang, “Metabolic flux modeling of detoxification of acetic acid by Ralstonia eutropha at slightly alkaline pH levels”, Biotechnology and Bioengineering, Vol. 73, No. 6, pp. 458-464, 2001 DOI:

L. Pandolfo, R. Colale, G. Paiaro, “Magnetic field and tap water”, La Chimica e l'Industria, Vol. 69, No. 11, pp. 88-89, 1987

D. L. Watt, C. Rosenfelder, C. D. Sutton, “The effect of oral irrigation with a magnetic water treatment device on plaque and calculus”, Journal of Clinical Periodontology, Vol. 20, No. 5, pp. 314-317, 1993 DOI:

V. Hogan, S. E. Mason, S. A. Campbell, F. C. Walsh, “The Use of Magnetic Fields in the Prevention of Scaling”, UK Corrosion and Eurocorr 94, Bournemouth, UK, October 31-November 3, 1994

G. Paiaro, L. Pandolfo, “Magnetic treatment of water and scaling deposit”, Annali di Chimica, Vol. 84, No. 5-6, pp. 271-274, 1994

V. K. Golovleva, G. E. Dunaevskii, T. L. Levdikova, Y. S. Sarkisov, Y. I. Tsyganok, “Study of the influence of magnetic fields on the properties of polar liquids”, Russian Physics Journal, Vol. 43, No. 12, pp. 1009-1012, 2000 DOI:

O. Mosin, I. Ignatov, “Magnetohydrodynamic cell for magnetic water treatment”, Nanotechnology Research and Practice, Vol. 6, No. 2, pp. 81-92, 2015 DOI:

J. Nakagawa, N. Hirota, K. Kitazawa, M. Shoda, “Magnetic field enhancement of water vaporization”, Journal of Applied Physics, Vol. 86, No. 5, pp. 2923-2925, 1999 DOI:

M. Yamashita, C. Duffield, W. A. Tiller, “Direct current magnetic field and electromagnetic field effects on the pH and oxidation-reduction potential equilibration rates of water. 1. Purified water”, Langmuir, Vol. 19, No. 17, pp. 6851-6856, 2003 DOI:

V. Kozic, L. C. Lipus, “Magnetic water treatment for a less tenacious scale”, Journal of Chemical Information and Computer Sciences, Vol. 43, No. 6, pp. 1815-1819, 2003 DOI:

Y. Z. Guo, D. C. Yin, H. L. Cao, J. Y. Shi, C. Zhang, Y. M. Liu, H. H. Huang, Y. Liu, Y. Wang, W. H. Guo, A. R. Qian, P. Shang, “Evaporation rate of water as a function of a magnetic field and field gradient”, International Journal of Molecular Sciences, Vol. 13, No. 12, pp. 16916-16928, 2012 DOI:

J. S. Baker, S. J. Judd, “Magnetic amelioration of scale formation”, Water Research, Vol. 30, No. 2, pp. 247-260, 1995 DOI:

H. B. Amor, A. Elaoud, M. Hozayn, “Does magnetic field change water pH?”, Asian Research Journal of Agriculture, Vol. 8, No.1, pp. 1-7, 2018 DOI:

F. Alimi, Anti-scale Treatment of Hard Water by Magnetic Processes, PhD Thesis, National Institute of Applied Science and Technology, Tunisia, 2008

A. Elaoud, N. Turki, H. B. Amor, R. Jalel, N. B. Salah, “Influence of the magnetic device on water quality and production of melon”, International Journal of Current Engineering & Technology, Vol. 6, No. 6, pp. 2256-2260, 2016

A. Kotb, A. M. A. E. Aziz, “Scientific investigations on the claims of the magnetic water conditioners”, Annals of Faculty Engineering Hunedoara-International Journal of Engineering, Vol. 11, No. 4, pp. 147-157, 2013

L. Jiang, J. Zhang, D. Li, “Effects of permanent magnetic field on calcium carbonate scaling of circulating water”, Desalination and Water Treatment, Vol. 53, No. 5, pp. 1275-1285, 2015


Additional Files

How to Cite

M. O. Karkush, M. D. Ahmed, and S. M. A. Al-Ani, “Magnetic Field Influence on The Properties of Water Treated by Reverse Osmosis”, Eng. Technol. Appl. Sci. Res., vol. 9, no. 4, pp. 4433–4439, Aug. 2019.


Abstract Views: 1333
PDF Downloads: 562 Untitled Downloads: 0

Metrics Information

Most read articles by the same author(s)