FPGA Implementation of a Robust MPPT of a Photovoltaic System Using a Fuzzy Logic Controller Based on Incremental and Conductance Algorithm

Authors

  • M. Y. Allani Faculty of Sciences, Tunis - El Manar University, Tunisia
  • D. Mezghani Laboratory of Application of Energy, Efficiency and Renewable Energies, Tunis El Manar University, Tunisia
  • F. Tadeo Department of Systems and Automation Engineering, University of Valladolid, Spain
  • A. Mami Laboratory of Application of Energy, Efficiency and Renewable Energies, Tunis El Manar University, Tunisia
Volume: 9 | Issue: 4 | Pages: 4322-4328 | August 2019 | https://doi.org/10.48084/etasr.2771

Abstract

Climate dependence requires robust control of the photovoltaic system. The current paper is divided in two main sections: the first part is dedicated to compare and evaluate the behaviors of three different maximum power point tracking (MPPT) techniques applied to photovoltaic energy systems, which are: incremental and conductance (IC), perturb and observe (P&O) and fuzzy logic controller (FLC) based on incremental and conductance. A model of a photovoltaic generator and DC/DC buck converter with different MPPT techniques is simulated and compared using Matlab/Simulink software. The comparison results show that the fuzzy controller is more effective in terms of response time, power loss and disturbances around the operating point. IC and P&O methods are effective but sensitive to high-frequency noise, less stable and present more oscillations around the PPM. In the second section, the FPGA platform is used to implement the proposed control. The FLC architecture is implemented on an FPGA Spartan 3E using the ISE Design Suite software. Simulation results showed the effectiveness of the proposed fuzzy logic controller.

Keywords:

fuzzy logic controller, P&O, IC, MPPT, energy solar, buck converter, FPGA

Downloads

Download data is not yet available.

References

A. Kane, V. Verma, B. Singh, “Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel”, Renewable and Sustainable Energy Reviews , Vol. 75, pp. 1295-1305, 2017 DOI: https://doi.org/10.1016/j.rser.2016.11.114

S. S. Chandel, T. Agarwal, “Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems”, Renewable and Sustainable Energy Reviews, Vol. 73, pp. 1342-1351, 2017 DOI: https://doi.org/10.1016/j.rser.2017.02.001

S. Selvan, P. Nair, Umayal, “A review on photo voltaic MPPT algorithms”, International Journal of Electrical and Computer Engineering, Vol. 6, No. 2, pp. 567-582, 2016 DOI: https://doi.org/10.11591/ijece.v6i2.pp567-582

L. W. Chong, Y. W. Wong, K. R. Rajkumar, K. R. Rajkumar, D. Isa, “Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems”, Renewable and Sustainable Energy Reviews, Vol. 66, pp. 174-189, 2016 DOI: https://doi.org/10.1016/j.rser.2016.07.059

A. H. Fathima, K. Palanisamy, “Optimization in microgrids with hybrid energy systems–A review”, Renewable and Sustainable Energy Reviews, Vol. 45, pp. 431-446, 2015 DOI: https://doi.org/10.1016/j.rser.2015.01.059

A. Loukriz, M. Haddadi, S. Messalti, “Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems”, ISA Transactions, Vol. 62, pp. 30-38, 2016 DOI: https://doi.org/10.1016/j.isatra.2015.08.006

F. Baghdadi, K. Mohammedi, S. Diaf, O. Behar, “Feasibility study and energy conversion analysis of stand-alone hybrid renewable energy system”, Energy Conversion and Management, Vol. 105, pp. 471-479, 2015 DOI: https://doi.org/10.1016/j.enconman.2015.07.051

A. Mahesh, K. S. Sandhu, “Hybrid wind/photovoltaic energy system developments: Critical review and findings”, Renewable and Sustainable Energy Reviews, Vol. 52, pp. 1135-1147, 2015 DOI: https://doi.org/10.1016/j.rser.2015.08.008

S. Messalti, A. Harrag, A. Loukriz, “A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation”, Renewable and Sustainable Energy Reviews, Vol. 68, No. 1, pp. 221-233, 2017 DOI: https://doi.org/10.1016/j.rser.2016.09.131

A. Jouda, F. Elyes, A. Rabhi, A. Mami, “Optimization of scaling factors of fuzzy–MPPT controller for stand-alone photovoltaic system by particle swarm optimization”, Energy Procedia, Vol. 111, pp. 954-963, 2016 DOI: https://doi.org/10.1016/j.egypro.2017.03.258

H. Othmani, D. Mezghani, A. Belaid, A. Mami, “New approach of incremental conductance algorithm for maximum power point tracking based on fuzzy logic”, International Journal of Grid and Distributed Computing, Vol. 9, No. 7, pp. 121-132, 2016 DOI: https://doi.org/10.14257/ijgdc.2016.9.7.13

W. Dengsheng, W. Lidi, H. Chuncheng, L. Tong, Z. Chenglong, L. Chenyang, “Research and Design of PV MPPT Based on STM32”, Chinese Control And Decision Conference, Shenyang, China, June 9-11, 2018 DOI: https://doi.org/10.1109/CCDC.2018.8407992

M. Farhat, O. Barambones, L. Sbita, “Efficiency optimization of a DSP-based standalone PV system using a stable single input fuzzy logic controller”, Renewable and Sustainable Energy Reviews, Vol. 49, pp. 907-920, 2015 DOI: https://doi.org/10.1016/j.rser.2015.04.123

M. Ricco, P. Manganiello, E. Monmasson, G. Petrone, G. Spagnuolo, “FPGA-based implementation of dual kalman filter for PV MPPT applications”, IEEE Transactions on Industrial Informatics, Vol. 13, Νο. 1, pp. 176-185, 2017 DOI: https://doi.org/10.1109/TII.2015.2462313

M. F. N. Zolkifli, M. S. Robian, S. Saon, A. K. Mahamad, “FPGA based maximum power point tracking of photovoltaic system using ANFIS controller”, ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 8, pp. 5094-5097, 2016

M. Jomaa, M. Y. Allani, F. Tadeo, A. Mami, “Design and Control of the Hybrid System PV-Wind Connected to the DC Load”, 9th International Renewable Energy Congress, Hammamet, Tunisia, March 20-22, 2018 DOI: https://doi.org/10.1109/IREC.2018.8362515

M. Y. Allani, M. Jomaa, D. Mezghani, A. Mami, “Modelling and Simulation of the Hybrid System PV-Wind with MATLAB/SIMULINK”, 9th International Renewable Energy Congress, Hammamet, Tunisia, March 20-22, 2018 DOI: https://doi.org/10.1109/IREC.2018.8362514

M. A. Jaballah, D. Mezghani, A. Mami, “Design and simulation of robust controllers for power electronic converters used in new energy architecture for a (PVG)/ (WTG) hybrid system”, International Journal of Advanced Computer Science and Applications, Vol. 8, No. 5, pp. 244-255, 2017 DOI: https://doi.org/10.14569/IJACSA.2017.080531

Z. Asma, D. Karim, D. Tarak, “Maximum power point tracking of photovoltaic systems based on fast terminal sliding mode controller”, International Journal of Renewable Energy Research, Vol. 6, No. 4, pp. 1435-1445, 2016

J. Jana, H. Samanta, K. D. Bhattacharya, H. Saha, “Design and development of high efficiency five stage battery charge controller with improved MPPT performance for solar PV systems”, International Journal of Renewable Energy Research, Vol. 8, No. 2, pp. 941-953, 2018

B. Benlahbib, N. Bouarroudj, S. Mekhilef, T. Abdelkrim, A. Lakhdari, F. Bouchafaa, “A fuzzy logic controller absed on maximum power point tracking algorithm for partially shaded PV array-experimental validation”, Electronika IR Electrotechnika, Vol. 24, No. 4, pp. 38-44, 2018 DOI: https://doi.org/10.5755/j01.eie.24.4.21476

J. Lee, Y. S. Kim, “Sensorless fuzzy-logic-based maximum power point tracking control for a small-scale wind power generation systems with a switched-mode rectifier”, IET Renewable Power Generation, Vol. 10, No. 2, pp. 194-202, 2016 DOI: https://doi.org/10.1049/iet-rpg.2015.0250

A. G. A. Gizi, S. A. Chlaihawi, M. Louzazni, A. Craciunescu, “Genetically optimization of an asymmetrical fuzzy logic based photovoltaic maximum power point tracking controller”, Advances in Electrical and Computer Engineering, Vol. 17, No. 4, pp. 69-76, 2017 DOI: https://doi.org/10.4316/AECE.2017.04009

Downloads

How to Cite

[1]
Allani, M.Y., Mezghani, D., Tadeo, F. and Mami, A. 2019. FPGA Implementation of a Robust MPPT of a Photovoltaic System Using a Fuzzy Logic Controller Based on Incremental and Conductance Algorithm. Engineering, Technology & Applied Science Research. 9, 4 (Aug. 2019), 4322–4328. DOI:https://doi.org/10.48084/etasr.2771.

Metrics

Abstract Views: 1241
PDF Downloads: 687

Metrics Information

Most read articles by the same author(s)