Flexural Strength of Reinforced Concrete RAC Beams Exposed to 6-hour Fire – Part 2: Rich Mix
Abstract
In this research work, experimental investigation on flexural strength of reinforced concrete beams exposed to fire for 6-hours at the temperature of 1000˚C is presented. The beams are made with 50% replacement of natural coarse aggregates with recyclable concrete aggregates. A total of 12 reinforced concrete beams using 1:1.5:3 mix (rich mix) and 0.54 water-cement ratio were cast. The beams were prepared in two groups. Group 1 beams were prepared with 50% recyclable aggregates, whereas group 2 beams were cast with all-natural aggregates (control specimens). All beams were exposed to fire at the above-mentioned temperature followed by testing in universal load testing machine under central point load. Comparison of the results reveals that proposed beams show comparable resistance even after exposed to 6-hours fire at 1000°C.
Keywords:
fire effect, flexural strength, recycled concrete aggregatesDownloads
References
A. A. Bhatti, B. A. Memon, “Strength, Deflection and Cracking Behavior of Concrete Slab Using Demolished Concrete as Coarse Aggregates”, International Journal of Engineering Sciences & Research Technology, Vol. 3, No. 6, pp. 492-506, 2014
M. Oad, B. A. Memon, “Compressive Strength of Concrete Cylinders using Coarse Aggregates from Old Concrete”, 1st National Conference on Civil Engineering (NCCE 2013-14)-(Modern Trends and Advancements), April 28-29, 2014
A. H. Buller, B. A. Memon, “Effect of Fire on Strength of Concrete Cubes with RCA as Coarse Aggregates”, 1st National Conference on Civil Engineering (NCCE 2013-14)-(Modern Trends and Advancements), April 28–29, 2014
B. A. Memon, “Recent Development on Use of Demolished Concrete as Coarse Aggregates”, International Journal of Emerging Technology and Innovative Engineering, Vol. 2, No. 1, pp. 1–11, 2016
D. J. Naus, The Effect of Elevated Temperature on Concrete Materials and Structures – A Literature Review, US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, 2006
D. Cree, M. Green, A. Noumowe, “Residual Strength of Concrete Containing Recycled Materials after Exposure to Fire: A Review”, Construction and Building Materials, Vol. 45, pp. 208-223, 2013 DOI: https://doi.org/10.1016/j.conbuildmat.2013.04.005
W. G. Li, J. Z. Xiao, C. J. Shi, C. S. Poon, “Structural Behavior of Composite Members with Recycled Aggregates Concrete – an Overview”, Advances in Structural Engineering, Vol. 18, No. 6, pp. 919-938, 2015 DOI: https://doi.org/10.1260/1369-4332.18.6.919
J. P. B. Vieira, J. R. Correia, J. de Brito, “Post-fire Residual Mechanical Properties of Concrete made with Recycled Concrete Coarse Aggregates”, Cement Concrete Research, Vol. 41, No. 5, pp. 533-541, 2011 DOI: https://doi.org/10.1016/j.cemconres.2011.02.002
A. M. Marques, J. R. Correia, J. de Brito, “Post-Fire Residual Mechanical Properties of Concrete made with Recycled Rubber Aggregate”, Fire Safety Journal, Vol. 18, pp. 49-57, 2013 DOI: https://doi.org/10.1016/j.firesaf.2013.02.002
M. Batayneh, I. Marie, I. Asi, “Use of Selected Waste Materials in Concrete Mixes”, Waste Management, Vol. 27, No. 12, pp. 1870-1876, 2007 DOI: https://doi.org/10.1016/j.wasman.2006.07.026
V. Kodur, “Properties of Concrete at Elevated Temperatures”, ISRN Civil Engineering, Vol. 2014, ArticleID 468510, 2014 DOI: https://doi.org/10.1155/2014/468510
G. Wang, D. Barber, P. Johnson, M. C. Hui, “Fire Safety Provisions for aged Concrete Building Structures”, Procedia Engineering, Vol. 62, pp. 629-638, 2013 DOI: https://doi.org/10.1016/j.proeng.2013.08.108
T. Drzymała, W. Jackiewicz-Rek, M. Tomaszewski, A. Kus, J. Galaj, R. Sukys, “Effects of High Temperature on Properties of High Performance Concrete (HPC)”, Procedia Engineering, Vol. 172, pp. 256-263, 2017 DOI: https://doi.org/10.1016/j.proeng.2017.02.108
J. T. Yu, Y. Liu, Z. D. Lu, K. Xiang, “Flexural Performance of Fire Damaged and Rehabilitated Two Span Reinforced Concrete Slabs and Beams”, Structural Engineering and Mechanics, Vol. 42, No. 6, pp. 799-813, 2012 DOI: https://doi.org/10.12989/sem.2012.42.6.799
M. A. Salau, O. J. Oseafiana, T. O. Oyegoke, “Effects of Elevated Temperature on Concrete with Recycled Coarse Aggregates”, IOP Conference Series: Materials Science and Engineering, Vol. 96, ArticleID 012078, 2015 DOI: https://doi.org/10.1088/1757-899X/96/1/012078
American Concrete Institute, ACI 318-05, Building Code Reqirement for Strucrural Concrete, ACI, 2005
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.