Post Construction and Long Term Settlement of an Embankment Dam Computed with Two Constitutive Models
Abstract
For the settlement computation of an embankment dam, the soil stiffness is of great importance. Unfortunately, due to the lack of funds allocated for geotechnical investigation, stiffness parameters are commonly not evaluated as compared to strength properties. As a result, this may create hindrance in the use of advanced constitutive models such as Hardening Soil Model (HSM). In this study, the settlement with respect to depth and long term settlement of an embankment dam computed with Mohr-Coulomb Model (MCM) is compared with that of HSM applied to foundation soil only with limited data on stiffness. The results show that the MCM overestimated settlement in comparison with HSM. The settlement increment of MCM, in comparison with HSM, at the crest and at the depth of 120m was 53% and 82% respectively after the filling of the reservoir. The settlement computed with MCM and HSM were 2.9% and 1.35% of the dam height. It can be interpreted that the settlement predicted with MCM is unrealistically high due to the single constant value of modulus of elasticity (MOE), while the predictions of HSM are in agreement with the literature. In addition, the long term settlement computed using MCM is about 59% higher than that of HSM for the condition after the filling of the reservoir. This paper shows that the settlement of an embankment dam could be predicted reliably by using HSM even when a limited number of stiffness data is available.
Keywords:
long term settlement, embankment dam, settlement with respect to depth, stiffness, crestDownloads
References
V. Gikas, M. Sakellariou, “Settlement analysis of the Mornos earth dam”, (Greece): Evidence from numerical modeling and geodetic monitoring”, Engineering Structures, Vol. 30, No. 11, pp. 3074-3081, 2008 DOI: https://doi.org/10.1016/j.engstruct.2008.03.019
R. Y. Liang, B. O. Nusier, A. H. Malkawi, “A reliability based approach for evaluating the slope stability of embankment dams”, Engineering Geology, Vol. 54, No. 3-4, pp. 271-285, 1999 DOI: https://doi.org/10.1016/S0013-7952(99)00017-4
A. D. Penman, “Instrumentation monitoring and surveillance”, in: Embankment Dams, Routledge, 2018 DOI: https://doi.org/10.1201/9780203750667
R. M. Roosta, A. Alizadeh, ”Simulation of collapse settlement in rock fill material due to saturation”, International Journal of Civil Engineering, Vol. 10, No. 2, pp. 93-99, 2012
R. Mahinroosta, A. Alizadeh, B. Gatmiri, “Simulation of collapse settlement of first filling in a high rockfill dam”, Engineering Geology, Vol. 187, pp. 32-44, 2015 DOI: https://doi.org/10.1016/j.enggeo.2014.12.013
T. Schanz, P. A. Vermeer, P. G. Bonnier, “The hardening soil model: formulation and verification”, in: Beyond 2000 in Computational Geotechnics, pp. 281-296, CRC Press, 1999 DOI: https://doi.org/10.1201/9781315138206-27
Y. Hejazi, D. Dias, R. Kastner, “Impact of constitutive models on the numerical analysis of underground constructions”, Acta Geotechnica, Vol. 3, No. 4, pp. 251-258, 2008 DOI: https://doi.org/10.1007/s11440-008-0056-1
R. B. Brinkgreve, “Selection of soil models and parameters for geotechnical engineering application”, Geo-Frontiers Congress 2005, Austin, USA, January 24-26, 2005 DOI: https://doi.org/10.1061/40771(169)4
R. F. Obrzud, “On the use of the Hardening Soil Small Strain model in geotechnical practice”, Numerics in Geotechnics and Structures, pp. 15-32, Elmepress International, 2010
R. B. J. Brinkgreve, S. Kumarswamy, W. M. Swolfs, Plaxis Reference Manual, PLAXIS, 2017
N. Janbu, “Soil compressibility as determined by oedometer and triaxial tests”, Proceedings of the European Conference on Soil Mechanics and Foundation Engineering (ECSMFE), Vol. 1, pp. 19-25, 1963
P. V. Soos, “Properties of Soil and Rock”, in: Grundbau Taschenbuch Part 4, Ernst & Sohn, 1990 (in German)
A. H. Bhutto, S. Zardari, M. A. Zardari, G. S. Bhurgri, B. A. Memon, R. Bhanbhro, M. M. Babar, “Mohr-Coulomb and Hardening Soil Model Comparison of the Settlement of an Embankment Dam”, Engineering, Technology & Applied Science Research, Vol. 9, No. 5, pp. 4654-4658, 2019 DOI: https://doi.org/10.48084/etasr.3034
G. Hunter, R. Fell, The Deformation Behaviour of Embankment Dams, The University of New South Wales, 2003
A. Araei, “Artificial neural networks for modeling drained monotonic behavior of rockfill materials”, International Journal of Geomechanics, Vol. 14, No. 3, Article ID 04014005, 2013 DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000323
ASCE Task Committee on Instrumentation and Dam Performance, Guidelines for Instrumentation and Measurements for Monitoring Dam Performance, ASCE, 2000
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.