Type-2 Fuzzy Logic Controller Based PSS for Large Scale Power Systems Stability
Abstract
In this paper, the application of the fuzzy logic based power systems stabilizer (FLPSS) to damp power system oscillation is presented. Various types of fuzzy logic controller are used to replace the conventional power system stabilizer (CPSS). The classic fuzzy logic controller based PSS (FLCPSS), the polar FLC (PFLCPSS) and the interval type-2 fuzzy logic controller based PSS (IT2FLCPSS) are applied to the New England - New York interconnected power system and the obtained results are compared. For coordination purposes, genetic algorithm (GA) is used to tune the FLCPSS’s gains. The non-linear simulation in the presence of noise confirms the robustness and the superiority of the IT2FLCPSS.
Keywords:
CPSS, FLCPSS, PFLCPS, IT2FLPSS, GA, prony analysisDownloads
References
T. Hiyama, “Development of fuzzy logic power system stabilizer and further studies”, 1999 IEEE International Conference on Systems, Man, and Cybernetics, Tokyo, Japan, October 12-15, 1999
M. Sanaye-Pasand, O. P. Malik, “Implementation and laboratory test results for a new fuzzy logic based PSS”, 1996 Canadian Conference on Electrical and Computer Engineering, Calgary, Canada, May, 26-29, 1996
M. A. M. Hassan, O. P. Malik, “Implementation and laboratory test results for a fuzzy logic based self-tuned power system stabilizer”, IEEE Transactions on Energy Conversion, Vol. 8, No. 2, pp. 221-228, 1993 DOI: https://doi.org/10.1109/60.222708
Q. Liang, J. M. Mendel, “An introduction to type-2 TSK fuzzy logic systems”, 1999 IEEE International Fuzzy Systems, Seoul, South Korea, August, 22-25, 1999
S. Barkat, A. Tlemcani, H. Nouri, “Noninteracting adaptive control of pmsm using interval type-2 fuzzy logic systems”, IEEE Transactions on Fuzzy Systems, Vol. 19, No. 5, pp. 925-936, 2011 DOI: https://doi.org/10.1109/TFUZZ.2011.2152815
X. Lu, M. Liu, J. Liu, “Design and optimization of interval type-2 fuzzy logic controller for delta parallel robot trajectory control”, International Journal of Fuzzy Systems, Vol. 17, No. 1, pp. 595-608, 2015 DOI: https://doi.org/10.1007/s40815-015-0131-3
T. Kumbasar, H. Hagras, “A self-tuning zslices-based general type-2 fuzzy picontroller”, IEEE Transactions on Fuzzy Systems, Vol. 23, No. 1, pp. 991-1013, 2015 DOI: https://doi.org/10.1109/TFUZZ.2014.2336267
A. Padhi, Hardware Realization of Interval Type 2 Fuzzy Logic Controller, PhD Thesis, National Institute of Technology, Rourkela, India, 2015
K. Su, S. Huang, C. Yang, “Development of robotic grasping gripper based on smart fuzzy controller”, International Journal of Fuzzy Systems, Vol. 19, No. 1, pp. 190-206, 2017
E. Nechadi, M. Harmas, A. Hamzaoui, N. Essounbouli, “Type-2 fuzzy based adaptive synergetic power system control”, Electric Power Systems Research, Vol. 88, pp. 9-15, 2012 DOI: https://doi.org/10.1016/j.epsr.2012.01.009
Z. Sun, N. Wang, D. Srinivasan, Y. Bi, “Optimal tunning of type-2 fuzzy logic power system stabilizer based on differential evolution algorithm”, International Journal of Electrical Power and Energy Systems, Vol. 62, pp. 19-28, 2014 DOI: https://doi.org/10.1016/j.ijepes.2014.04.022
S. Kamel, B. Ziyad, H. M. Naguib, A. Mouloud, R. Mohamed, “An indirect adaptive type-2 fuzzy sliding mode PSS design to damp power system oscillations”, 7th International Conference on Modelling, Identification and Control, Sousse, Tunisia, December 18-20, 2015 DOI: https://doi.org/10.1109/ICMIC.2015.7409472
A. Abbadi, L. Nezli, D. Boukhetala, “A nonlinear voltage controller based on interval type 2 fuzzy logic control system for multimachine power systems”, International Journal of Electrical Power and Energy Systems, Vol. 45, No. 1, pp. 456-467, 2013 DOI: https://doi.org/10.1016/j.ijepes.2012.09.020
M. Tripathy, S. Mishra, “Interval type-2-based thyristor controlled series capacitor to improve power system stability”, IET Generation, Transmission & Distribution, Vol. 5, No. 2, pp. 209-222, 2011 DOI: https://doi.org/10.1049/iet-gtd.2010.0035
N. Karnik, J. Mendel, Q. Liang, “Type-2 fuzzy logic systems”, IEEE Transactions on Fuzzy Systems, Vol. 7, No. 6, pp. 643-658, 1999 DOI: https://doi.org/10.1109/91.811231
K. Sebaa, M. Boudour, “Optimal locations and tuning of robust power system stabilizer using genetic algorithms”, Electric Power Systems Research, Vol. 79, No. 2, pp. 406-416, 2009 DOI: https://doi.org/10.1016/j.epsr.2008.08.005
G. Rogers, Power System Oscillations, Springer, 2000 DOI: https://doi.org/10.1007/978-1-4615-4561-3
P. Kundur, Power System Stability and Control, EPRI, 1994
K. Sebaa, H. Gueguen, M. Boudour, “Mixed integer non-linear programming via the cross-entropy approach for power system stabilisers location and tuning”, IET Generation, Transmission & Distribution, Vol. 4, No. 8, pp. 928-939, 2010 DOI: https://doi.org/10.1049/iet-gtd.2009.0435
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.