Numerical Analysis of SHB Effects in Laterally-Coupled Distributed Feedback (LC-DFB) Lasers
Abstract
In this paper the stability of Laterally-Coupled Distributed Feedback (LC-DFB) Lasers against the Spatial Hole Burning (SHB) effect is analyzed theoretically. The stability of the laser structure is evaluated using the flatness parameter F. It is shown that the LC-DFB lasers are stable in a wide range of different values of ridge width and amplitude grating. The stability is sustained with increasing injection current. The results show that the flatness parameter is minimal for certain values of the amplitude grating. The numerical calculations have been done by coupled wave and carrier rate equations on the basis of the transfer matrix method (TMM)
Keywords:
Laterally coupled distributed feedback laser, spatial hole burning, rate equation, coupled wave equation, transfer matrix methodDownloads
References
K. Nosu, K. Iwashita, “A consideration of factors affecting future coherent lightwave communication”, J. Lightwave Technol. Vol. 6, No. 5, pp. 686-694, 1988 DOI: https://doi.org/10.1109/50.4054
H. Kogelnik, C. V. Shank, “Coupled-wave theory of distributed feedback lasers”, J. Appl. Phys., Vol. 43, No. 5, pp. 2327-2335, 1972 DOI: https://doi.org/10.1063/1.1661499
K. Utaka, S. Akiba, K. Saki, Y. Matsushima, “ λ/4-shifted InGaAsP DFB laser,” IEE J. Quantum Electron., Vol. 22, No. 7, pp. 1042-1051, 1986 DOI: https://doi.org/10.1109/JQE.1986.1073089
H. Ghafouri-Shiraz, B. S. K. Lo, Distributed feedback laser diodes: principles and physical modelling, John-Wiley & Son, 1996
J. Kinoshita, K. Matsumoto, “Yield analysis of SML DFB lasers with an axially-flattened internal field”, IEE J. Quanrum Electron., Vol. 25, pp. 1324-1332, 1989 DOI: https://doi.org/10.1109/3.29264
H. Soda, Y. Kotaki, H. Sudo, H Ishikwa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in single longitudinal mode operation in GaInAsP/Inp phase-adjusted DFB lasers”, IEEE J . Quantum Electron., Vol. 23, No. 6, pp. 804-814, 1987 DOI: https://doi.org/10.1109/JQE.1987.1073454
R. Millett, K. Hinzer, T. Hall, H. Schriemer, “Simulation Analysis of Higher Order Laterally-Coupled Distributed Feedback Lasers”, IEEE J. Quantum Electron. Vol. 44, No. 12, pp. 1145-1151, 2008 DOI: https://doi.org/10.1109/JQE.2008.2002089
R. Millett, H. Schriemer, T. Hall, K. Hinzer, “Properties of Laterally-Coupled Distributed Feedback Lasers with Higher Order Gratings,” NUSOD '08, International Conference on Numerical Simulation of Optoelectronic Devices, pp. 13-14, United Kingdom, 2008 DOI: https://doi.org/10.1109/NUSOD.2008.4668218
W. Streifer, D. R. Scifres, R. D. Burnham, “Coupled wave analysis of DFB and DBR lasers”, IEEE J. Quantum Electron., Vol. 13, No. 4, pp. 134–141, 1977 DOI: https://doi.org/10.1109/JQE.1977.1069328
J. Wang, J. Tian, P. Cai, B. Xiong C. Sun, Y. Luo, “1.55- m AlGaInAs–InP Laterally Coupled Distributed Feedback Laser”, IEEE Photonics Technology Letters, Vol. 17, No. 7, pp. 1372-1374, 2005 DOI: https://doi.org/10.1109/LPT.2005.848398
G. P. Agrawal, A. K. Dutta, Semiconductor lasers, Van Nostrand Reinhold, 1966
M. Osinsky, M. J. Adams, “Gain spectra of quaternary semiconductor”, IEE Proc. In Solid-State and Electron Devices, Vol. 129, No. 6, pp. 229-236, 1982 DOI: https://doi.org/10.1049/ip-i-1.1982.0051
S. F. Yu, “Double-tapered-Waveguide distributed feedback lassers for high-power single mode operation”, IEE J. Quantum Electron., Vol. 33, No. 1, pp. 71-80, 1997 DOI: https://doi.org/10.1109/3.554893
K. David, J. Buus, G. Morthier, R. Baest, “Coupling coefficients in gain coupled DFB lasers: Inherent compromise between coupling strength and loss”, IEEE Photonics Technology Letters, Vol. 3, No. 5, pp. 439-441, 1991 DOI: https://doi.org/10.1109/68.93871
F. Shahshahani, V. Ahmadi, “Analysis of relative intensity noise in tapered grating QWS-DFB laser diodes by using three rate equations model”, Solid-State Electronics, Vol. 52, No. 6, pp. 857-862, 2008 DOI: https://doi.org/10.1016/j.sse.2008.01.014
T. Makino, “Transfer-matrix formulation of spontaneous emission noise of DFB semiconductor lasers”, J. Lightwave Technol., Vol. 9, No. 1, pp. 84-91, 1991 DOI: https://doi.org/10.1109/50.64926
G. Agrawal, Fiber-optic communication system. John Wiley & Sons, 1992
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.