Numerical Analysis of SHB Effects in Laterally-Coupled Distributed Feedback (LC-DFB) Lasers

M. Seifouri, F. Shahshahani, A. Faraji


In this paper the stability of Laterally-Coupled Distributed Feedback (LC-DFB) Lasers against the Spatial Hole Burning (SHB) effect is analyzed theoretically. The stability of the laser structure is evaluated using the flatness parameter F. It is shown that the LC-DFB lasers are stable in a wide range of different values ​​of ridge width and amplitude grating. The stability is sustained with increasing injection current. The results show that the flatness parameter is minimal for certain values ​​of the amplitude grating. The numerical calculations have been done by coupled wave and carrier rate equations on the basis of the transfer matrix method (TMM)


Laterally coupled distributed feedback laser; spatial hole burning; rate equation; coupled wave equation; transfer matrix method

Full Text:



K. Nosu, K. Iwashita, “A consideration of factors affecting future coherent lightwave communication”, J. Lightwave Technol. Vol. 6, No. 5, pp. 686-694, 1988

H. Kogelnik, C. V. Shank, “Coupled-wave theory of distributed feedback lasers”, J. Appl. Phys., Vol. 43, No. 5, pp. 2327-2335, 1972

K. Utaka, S. Akiba, K. Saki, Y. Matsushima, “ λ/4-shifted InGaAsP DFB laser,” IEE J. Quantum Electron., Vol. 22, No. 7, pp. 1042-1051, 1986

H. Ghafouri-Shiraz, B. S. K. Lo, Distributed feedback laser diodes: principles and physical modelling, John-Wiley & Son, 1996

J. Kinoshita, K. Matsumoto, “Yield analysis of SML DFB lasers with an axially-flattened internal field”, IEE J. Quanrum Electron., Vol. 25, pp. 1324-1332, 1989

H. Soda, Y. Kotaki, H. Sudo, H Ishikwa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in single longitudinal mode operation in GaInAsP/Inp phase-adjusted DFB lasers”, IEEE J . Quantum Electron., Vol. 23, No. 6, pp. 804-814, 1987

R. Millett, K. Hinzer, T. Hall, H. Schriemer, “Simulation Analysis of Higher Order Laterally-Coupled Distributed Feedback Lasers”, IEEE J. Quantum Electron. Vol. 44, No. 12, pp. 1145-1151, 2008

R. Millett, H. Schriemer, T. Hall, K. Hinzer, “Properties of Laterally-Coupled Distributed Feedback Lasers with Higher Order Gratings,” NUSOD '08, International Conference on Numerical Simulation of Optoelectronic Devices, pp. 13-14, United Kingdom, 2008

W. Streifer, D. R. Scifres, R. D. Burnham, “Coupled wave analysis of DFB and DBR lasers”, IEEE J. Quantum Electron., Vol. 13, No. 4, pp. 134–141, 1977

J. Wang, J. Tian, P. Cai, B. Xiong C. Sun, Y. Luo, “1.55- m AlGaInAs–InP Laterally Coupled Distributed Feedback Laser”, IEEE Photonics Technology Letters, Vol. 17, No. 7, pp. 1372-1374, 2005

G. P. Agrawal, A. K. Dutta, Semiconductor lasers, Van Nostrand Reinhold, 1966

M. Osinsky, M. J. Adams, “Gain spectra of quaternary semiconductor”, IEE Proc. In Solid-State and Electron Devices, Vol. 129, No. 6, pp. 229-236, 1982

S. F. Yu, “Double-tapered-Waveguide distributed feedback lassers for high-power single mode operation”, IEE J. Quantum Electron., Vol. 33, No. 1, pp. 71-80, 1997

K. David, J. Buus, G. Morthier, R. Baest, “Coupling coefficients in gain coupled DFB lasers: Inherent compromise between coupling strength and loss”, IEEE Photonics Technology Letters, Vol. 3, No. 5, pp. 439-441, 1991

F. Shahshahani, V. Ahmadi, “Analysis of relative intensity noise in tapered grating QWS-DFB laser diodes by using three rate equations model”, Solid-State Electronics, Vol. 52, No. 6, pp. 857-862, 2008

T. Makino, “Transfer-matrix formulation of spontaneous emission noise of DFB semiconductor lasers”, J. Lightwave Technol., Vol. 9, No. 1, pp. 84-91, 1991

G. Agrawal, Fiber-optic communication system. John Wiley & Sons, 1992

eISSN: 1792-8036     pISSN: 2241-4487