Numerical Analysis of SHB Effects in Laterally-Coupled Distributed Feedback (LC-DFB) Lasers

Authors

  • M. Seifouri Shahid Rajaee Teacher Training University, Faculty of Electrical & Computer Engineering, Iran
  • F. Shahshahani Alzahra University, Faculty of Science, Iran
  • A. Faraji Shahid Rajaee Teacher Training University, Faculty of Electrical & Computer Engineering, Iran
Volume: 2 | Issue: 5 | Pages: 273-277 | October 2012 | https://doi.org/10.48084/etasr.196

Abstract

In this paper the stability of Laterally-Coupled Distributed Feedback (LC-DFB) Lasers against the Spatial Hole Burning (SHB) effect is analyzed theoretically. The stability of the laser structure is evaluated using the flatness parameter F. It is shown that the LC-DFB lasers are stable in a wide range of different values ​​of ridge width and amplitude grating. The stability is sustained with increasing injection current. The results show that the flatness parameter is minimal for certain values ​​of the amplitude grating. The numerical calculations have been done by coupled wave and carrier rate equations on the basis of the transfer matrix method (TMM)

Keywords:

Laterally coupled distributed feedback laser, spatial hole burning, rate equation, coupled wave equation, transfer matrix method

Downloads

Download data is not yet available.

References

K. Nosu, K. Iwashita, “A consideration of factors affecting future coherent lightwave communication”, J. Lightwave Technol. Vol. 6, No. 5, pp. 686-694, 1988 DOI: https://doi.org/10.1109/50.4054

H. Kogelnik, C. V. Shank, “Coupled-wave theory of distributed feedback lasers”, J. Appl. Phys., Vol. 43, No. 5, pp. 2327-2335, 1972 DOI: https://doi.org/10.1063/1.1661499

K. Utaka, S. Akiba, K. Saki, Y. Matsushima, “ λ/4-shifted InGaAsP DFB laser,” IEE J. Quantum Electron., Vol. 22, No. 7, pp. 1042-1051, 1986 DOI: https://doi.org/10.1109/JQE.1986.1073089

H. Ghafouri-Shiraz, B. S. K. Lo, Distributed feedback laser diodes: principles and physical modelling, John-Wiley & Son, 1996

J. Kinoshita, K. Matsumoto, “Yield analysis of SML DFB lasers with an axially-flattened internal field”, IEE J. Quanrum Electron., Vol. 25, pp. 1324-1332, 1989 DOI: https://doi.org/10.1109/3.29264

H. Soda, Y. Kotaki, H. Sudo, H Ishikwa, S. Yamakoshi, H. Imai, “Stability in single longitudinal mode operation in single longitudinal mode operation in GaInAsP/Inp phase-adjusted DFB lasers”, IEEE J . Quantum Electron., Vol. 23, No. 6, pp. 804-814, 1987 DOI: https://doi.org/10.1109/JQE.1987.1073454

R. Millett, K. Hinzer, T. Hall, H. Schriemer, “Simulation Analysis of Higher Order Laterally-Coupled Distributed Feedback Lasers”, IEEE J. Quantum Electron. Vol. 44, No. 12, pp. 1145-1151, 2008 DOI: https://doi.org/10.1109/JQE.2008.2002089

R. Millett, H. Schriemer, T. Hall, K. Hinzer, “Properties of Laterally-Coupled Distributed Feedback Lasers with Higher Order Gratings,” NUSOD '08, International Conference on Numerical Simulation of Optoelectronic Devices, pp. 13-14, United Kingdom, 2008 DOI: https://doi.org/10.1109/NUSOD.2008.4668218

W. Streifer, D. R. Scifres, R. D. Burnham, “Coupled wave analysis of DFB and DBR lasers”, IEEE J. Quantum Electron., Vol. 13, No. 4, pp. 134–141, 1977 DOI: https://doi.org/10.1109/JQE.1977.1069328

J. Wang, J. Tian, P. Cai, B. Xiong C. Sun, Y. Luo, “1.55- m AlGaInAs–InP Laterally Coupled Distributed Feedback Laser”, IEEE Photonics Technology Letters, Vol. 17, No. 7, pp. 1372-1374, 2005 DOI: https://doi.org/10.1109/LPT.2005.848398

G. P. Agrawal, A. K. Dutta, Semiconductor lasers, Van Nostrand Reinhold, 1966

M. Osinsky, M. J. Adams, “Gain spectra of quaternary semiconductor”, IEE Proc. In Solid-State and Electron Devices, Vol. 129, No. 6, pp. 229-236, 1982 DOI: https://doi.org/10.1049/ip-i-1.1982.0051

S. F. Yu, “Double-tapered-Waveguide distributed feedback lassers for high-power single mode operation”, IEE J. Quantum Electron., Vol. 33, No. 1, pp. 71-80, 1997 DOI: https://doi.org/10.1109/3.554893

K. David, J. Buus, G. Morthier, R. Baest, “Coupling coefficients in gain coupled DFB lasers: Inherent compromise between coupling strength and loss”, IEEE Photonics Technology Letters, Vol. 3, No. 5, pp. 439-441, 1991 DOI: https://doi.org/10.1109/68.93871

F. Shahshahani, V. Ahmadi, “Analysis of relative intensity noise in tapered grating QWS-DFB laser diodes by using three rate equations model”, Solid-State Electronics, Vol. 52, No. 6, pp. 857-862, 2008 DOI: https://doi.org/10.1016/j.sse.2008.01.014

T. Makino, “Transfer-matrix formulation of spontaneous emission noise of DFB semiconductor lasers”, J. Lightwave Technol., Vol. 9, No. 1, pp. 84-91, 1991 DOI: https://doi.org/10.1109/50.64926

G. Agrawal, Fiber-optic communication system. John Wiley & Sons, 1992

Downloads

How to Cite

[1]
M. Seifouri, F. Shahshahani, and A. Faraji, “Numerical Analysis of SHB Effects in Laterally-Coupled Distributed Feedback (LC-DFB) Lasers”, Eng. Technol. Appl. Sci. Res., vol. 2, no. 5, pp. 273–277, Oct. 2012.

Metrics

Abstract Views: 541
PDF Downloads: 340

Metrics Information

Most read articles by the same author(s)