SLA Management For Virtual Machine Live Migration Using Machine Learning with Modified Kernel and Statistical Approach

Authors

  • M. K. Hassan Future University, Khartoum, Sudan
  • A. Babiker Neelain University, Khartoum, Sudan
  • M. Baker University of Gezira, Sudan
  • M. Hamad Universiti Teknologi Malaysia, Malaysia
Volume: 8 | Issue: 1 | Pages: 2459-2463 | February 2018 | https://doi.org/10.48084/etasr.1692

Abstract

Application of cloud computing is rising substantially due to its capability to deliver scalable computational power. System attempts to allocate a maximum number of resources in a manner that ensures that all the service level agreements (SLAs) are maintained. Virtualization is considered as a core technology of cloud computing. Virtual machine (VM) instances allow cloud providers to utilize datacenter resources more efficiently. Moreover, by using dynamic VM consolidation using live migration, VMs can be placed according to their current resource requirements on the minimal number of physical nodes and consequently maintaining SLAs. Accordingly, non optimized and inefficient VMs consolidation may lead to performance degradation. Therefore, to ensure acceptable quality of service (QoS) and SLA, a machine learning technique with modified kernel for VMs live migrations based on adaptive prediction of utilization thresholds is presented. The efficiency of the proposed technique is validated with different workload patterns from Planet Lab servers.

 

Keywords:

virtual machine, migration, machine learning, SLA

Downloads

Download data is not yet available.

References

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A. Warfield, “Xen and the art of virtualization”, 19th ACM Symposium on Operating Systems Principles, pp 164-177, 2003 DOI: https://doi.org/10.1145/1165389.945462

S. Akoush, R. Sohan, A. Rice, A. W. Moore, A. Hopper, “Predicting the Performance of Virtual Machine Migration”, IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems, 2010 DOI: https://doi.org/10.1109/MASCOTS.2010.13

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, A. Warfield, “Live migration of virtual machines”, 2nd Symposium on Networked Systems Design and Implementation, pp 273-286, 2005

A. B. Nagarajan , F. Mueller, C. Engelmann, L. Scott, “Proactive fault tolerance for HPC with Xen virtualization”, 21st Annual International Conference on Supercomputing, pp 23–32, 2007 DOI: https://doi.org/10.1145/1274971.1274978

R. Nathuji, K. Schwan, “Virtual power: Coordinated power management in virtualized enterprise systems”, ACM SIGOPS Operating Systems Review, Vol. 41, No. 6, pp. 265-278, 2007 DOI: https://doi.org/10.1145/1323293.1294287

Y. Song, H. Wang, Y. Li, B. Feng, Y. Sun, “Multi-tiered on-demand resource scheduling for VM-based data center”, 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 148-155, 2009 DOI: https://doi.org/10.1109/CCGRID.2009.11

VMware Inc, VMware distributed power management concepts and use, 2010

A. Beloglazov, R. Buyya.,Adaptive Threshold-Based Approach for Energy-Efficient Consolidation of Virtual Machines in Cloud Data Centers, Dept. of Computer Science and Software Engineering, University of Melbourne, 2010 DOI: https://doi.org/10.1145/1890799.1890803

T. C. Ferreto, M. A. S. Netto, R. N. Calheiros, C. A. F. De Rose, “Server consolidation with migration control for virtualized data centers”, Future Generation Compute Systems, Vol. 27, No. 8, pp 1027–1034, 2011 DOI: https://doi.org/10.1016/j.future.2011.04.016

T. Wood, G.Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, M. D. Corner, “Memory buddies: exploiting page sharing for smart co-location in virtualized data centers”, ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, pp. 31-40,2009 DOI: https://doi.org/10.1145/1508293.1508299

T. Hirofuchi, H. Nakada, S. Itoh, S. Sekiguchi, “Reactive consolidation of virtual machines enabled by post copy live migration”, 5th international workshop on Virtualization technologies in distributed computing, pp 11-18, 2011 DOI: https://doi.org/10.1145/1996121.1996125

D. Kakadia, N. Kopri, V. Varma, “Network-aware virtual machine consolidation for large data centers”, 3rd International Workshop on Network-Aware Data Management, 2013 DOI: https://doi.org/10.1145/2534695.2534702

H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, L. Yuan, “Online self-reconfiguration with performance guarantee for energy-efficient large-scale cloud computing data centers”, IEEE International Conference on Service Computing, pp. 514-521, 2010 DOI: https://doi.org/10.1109/SCC.2010.69

M. Sindelar, R. K. Sitaraman, P. Shenoy, “Sharing-aware algorithms for virtual machine co location”, AMC 23rd symposium on Parallelism in algorithms architectures, pp. 367-378, 2011 DOI: https://doi.org/10.1145/1989493.1989554

A. Beloglazov, “Energy-efficient management of virtual machines in data centers for cloud computing”, PhD Thesis, Department of Computer Science, Melbourne University, 2013

T. Chen, X. Gao, G. Chen, “Optimized Virtual Machine Placement with Traffic-Aware Balancing in Data Center Networks”, Scientific Programming, Vol. 2016, Article ID 3101658, 2016 DOI: https://doi.org/10.1155/2016/3101658

Z. Zhou, Z. Hu, K. Li, “Virtual Machine Placement Algorithm for Both Energy-Awareness and SLA Violation Reduction in Cloud Data Centers”, Scientific Programming, Vol. 2016, Article ID 5612039, 2016 DOI: https://doi.org/10.1155/2016/5612039

M. Khalaf Alla H. M., A. Babiker, M. B. M. Amien, M. Hamad, “Review in cloud based next generation telecommunication network”, Jurnal Teknology, Vol. 78, No. 6, pp. 51–57, 2016 DOI: https://doi.org/10.11113/jt.v78.5135

R. Timofeev, Classification and Regression Trees (CART). Theory and Applications, MSc Thesis, Humboldt University, Berlin, 2004

H. Yu, S. Kim, “SVM Tutorial: Classification, Regression, and Ranking”, In: Handbook of Natural Computing, pp. 479-506, Springer, 2012 DOI: https://doi.org/10.1007/978-3-540-92910-9_15

K. Q. Weinberger, L. K. Saul, “Distance Metric Learning for Large Margin Nearest Neighbor Classification”, Journal of Machine Learning Research, Vol. 10, pp. 207-244, 2009

N. Japkowicz, M. Shah, Evaluating Learning Algorithms: A Classification Perspective, Cambridge Press, 2011

Downloads

How to Cite

[1]
M. K. Hassan, A. Babiker, M. Baker, and M. Hamad, “SLA Management For Virtual Machine Live Migration Using Machine Learning with Modified Kernel and Statistical Approach”, Eng. Technol. Appl. Sci. Res., vol. 8, no. 1, pp. 2459–2463, Feb. 2018.

Metrics

Abstract Views: 775
PDF Downloads: 326

Metrics Information
Bookmark and Share

Most read articles by the same author(s)