Modeling and Parameter Optimization for Surface Roughness and Residual Stress in Dry Turning Process

Authors

  • M. H. El-Axir Mechanical Engineering Department, Northern Border University, Arar, Saudi Arabia
  • M. M. Elkhabeery Mechanical Engineering Department, Northern Border University, Arar, Saudi Arabia
  • M. M. Okasha Mechanical Engineering Department,Northern Border University, Arar, Saudi Arabia | On leave from Mechanical Engineering Department, Faculty of Industrial Education, Helwan University, Egypt
Volume: 7 | Issue: 5 | Pages: 2047-2055 | October 2017 | https://doi.org/10.48084/etasr.1560

Abstract

The influence of some turning variables and tool overhang on surface roughness parameters and residual stress induced due to machining 6061-T6 aluminum alloy is investigated in this paper. Four input parameters (cutting speed, feed rate, depth of cut and tool overhang) are considered. Tests are carried out by precision turning operation on a lathe. Design of experiment techniques, i.e. response surface methodology (RSM) and Taguchi's technique have been used to accomplish the objective of the experimental study. Surface roughness parameters are measured using a portable surface roughness device while residual stresses are measured employing deflection-etching technique using electrochemical analysis. The results obtained reveal that feed and rotational speed play significant role in determining the average surface roughness. Furthermore, the depth of cut and tool overhang are less significant parameters, whereas tool overhang interacts with feed rate. The best result of surface roughness was obtained using low or medium values of overhang with low speed and /or feed rate. Minimum maximum tensile residual stress can be obtained with a combination of tool overhang of 37 mm with very low depth of cut, low rotational speed and feed rate of 0.188 mm/rev.

Keywords:

Al-6061-T, RS, surface roughness parameters, residual stress, turning parameters

Downloads

Download data is not yet available.

References

I. S. Jawahir, E. Brinksmeier, R. M’Saubi, D. K. Aspinwall, J. C. Outeiro, D. Meyer, D. Umbrello, A. D. Jayala, “Surface Integrity in Material Removal Processes: Recent advances”, CIRP Annals-Manufacturing Technology, Vol. 60, No. 2, pp. 603-626, 2011 DOI: https://doi.org/10.1016/j.cirp.2011.05.002

D. A. Axinte, R. C. Dewes, “Surface integrity of hot work tool steel after high speed milling–Experimental data and Empirical models”, Journal of Materials Processing Technology, Vol. 127,No. 3, pp. 325-335, 2000 DOI: https://doi.org/10.1016/S0924-0136(02)00282-0

D. Ulutan, T. Ozel, “Machining induced surface integrity in titanium and nickel alloy-A Review”, International Journal of Machine Tools and Manufacture, Vol. 51, No. 3, pp. 250-280, 2011 DOI: https://doi.org/10.1016/j.ijmachtools.2010.11.003

C. J. Rao, D. Nageswara Rao, P. Srihari, “Influence of cutting parameters on cutting force and surface finish in turning operation”, Procedia Engineering Vol. 64, pp. 1405–1415, 2013 DOI: https://doi.org/10.1016/j.proeng.2013.09.222

V. Mishra, G. S. Khan, K. D. Chattopadhyay, K. Nand, R. G. V. Sarepaka, “Effects of tool overhang on selection of machining parameters and surface finish during diamond turning”, Measurement, Vol. 55, pp. 353– 361, 2014 DOI: https://doi.org/10.1016/j.measurement.2014.05.019

R. Horvath, A. Dregelyi-Kiss, “Analysis of surface roughness of aluminum alloys fine turned: united phenomenological models and multiperformance optimization”, Measurement, Vol. 65, pp. 181–192, 2015 DOI: https://doi.org/10.1016/j.measurement.2015.01.013

S. J. Raykar, D. M. D’Addona, A. M. Mane, “Multi-objective optimization of high speed turning of al 7075 using grey relational analysis”, Procedia CIRP, Vol. 33, pp. 293–298, 2015 DOI: https://doi.org/10.1016/j.procir.2015.06.052

D. Deepak, B. Rajendra, “Investigations on the surface roughness produced in turning of Al6061 (AsCast) by Taguchi Method”, International Journal of Research in Engineering and Technology, Vol. 04, No. 8, pp.295-298, 2015 DOI: https://doi.org/10.15623/ijret.2015.0408051

C. R. Liu, M. M. Barash, “Variables governing patterns of mechanical residual stresses in a machined surface”, Journal of Engineering for Industry, Vol. 104, No. 3, pp. 257-264, 1982 DOI: https://doi.org/10.1115/1.3185828

W. Li, P. J. Withers, W. Preuss, P. Andrews, “Depth and lateral variation of machining-induced residual stress for nickel base superalloy”, Material Science Forum, Vol. 681, pp. 332-339, 2011 DOI: https://doi.org/10.4028/www.scientific.net/MSF.681.332

R. S. Pawade, S. S. Joshi, P. K. Brahmankar, “Effect of machining parameter and cutting edge geometry on surface integrity of high speed turned inconel”,. International Journal of Machine Tools and Manufacture, Vol. 48, No. 1, pp. 15-28, 2008 DOI: https://doi.org/10.1016/j.ijmachtools.2007.08.004

F. Diaz, C. Mammana, A. Guidobono, “Evaluation of residual stresses induced by high speed milling using an indentation method”, Modern Mechanical Engineering, Vol .2, No. 4, pp. 143-150, 2012 DOI: https://doi.org/10.4236/mme.2012.24019

F. Diaz, C. Mammana, Study of residual stresses in conventional and high speed milling, Nova Science Publishers, Inc., New York, pp. 127-156, 2012

D. W. Wu, Y. Matsumoto, “The effect of hardness on the residual stresses in orthogonal machining of aisi 4340 steel”, Journal of Engineering for Industry, Vol. 112, No. 3, pp. 245-252, 1990 DOI: https://doi.org/10.1115/1.2899582

Y. Matsumoto, M. Barash, C. R. Liu, “Effect of hardness on surface integrity of aisi 4340 steel”, Journal of Engineering for Industry, Vol. 108, No. 3, pp. 169-175, 1986 DOI: https://doi.org/10.1115/1.3187060

M. M. El-Khabeery, M. Fattouh, “Residual stress distribution caused by milling” International Journal of Machine Tool and Manufacture, Vol. 29, No. 3, pp. 391-401,1989 DOI: https://doi.org/10.1016/0890-6955(89)90008-4

K. H. Fuh, C.F. Wu, “A residual stress model for the milling of aluminum alloy 2014-T6”, Journal of Materials Processing Technology, Vol. 51, No. 1-4, pp. 87-105, 1995 DOI: https://doi.org/10.1016/0924-0136(94)01355-5

D. Y. Jang, T. R. Watkins, K. J. Kozack, C. R. Hubbard, O. B. Cavin, “Surface residual stresses in machined austenitic stainless steel”, Wear, Vol. 194, No. 1-2, pp. 168-173, 1996 DOI: https://doi.org/10.1016/0043-1648(95)06838-4

A. B. Sadat, “Effect of high Speed turning of on surface integrity of 4340 steel”, Journal of Material Science and Technology, Vol. 6, pp. 371-375, 1990 DOI: https://doi.org/10.1179/mst.1990.6.4.371

D. Ulutan, M. Sima, T. Ozel, “Prediction of machining induced surface integrity using plastic-viscoplastic simulation and temperature- dependent flow softening material model in titanium and nickel- based alloy”, Advanced Materials Research, Vol. 223, pp. 401-410, 2011 DOI: https://doi.org/10.4028/www.scientific.net/AMR.223.401

J. Outeiro, “Optimization of Machining parameters for improved surface integrity of AISI H13 tool steel”, 7th MUGV (Machines et Usinage a Grande Vitesse), pp. 1-10, 2012

P. J. Ross, Taguchi Techniques for Quality Engineering, McGraw-Hill, New York, 1993

S. Basavarajappa, G. Chandramohan, J. Paulo Davim, “Some studies on drilling of hybrid metal matrix composites based on Taguchi techniques”, Journal of Materials Processing Technology, Vol.196, No. 1-3, pp. 332–338, 2008 DOI: https://doi.org/10.1016/j.jmatprotec.2007.05.043

D. I. Lalwani, N. K. Mehta, P. K. Jain, “Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel”, Journal of Materials Processing Technology, Vol. 206, No. 1-3, pp. 167–179, 2008 DOI: https://doi.org/10.1016/j.jmatprotec.2007.12.018

A. Manna, S. Salodkar, “Optimization of machining conditions for effective turning of E0300 alloy steel”, Journal of Materials Processing Technology, Vol. 203, No. 1-3, pp. 147-153, 2008 DOI: https://doi.org/10.1016/j.jmatprotec.2007.09.052

M. Nalbant, H. Gokkaya, G. Sur, “Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning”, Matererials &. Design, Vol. 28, No. 4, pp. 1379-1385, 2007 DOI: https://doi.org/10.1016/j.matdes.2006.01.008

D. P. Selvaraj, P. Chandramohan, “Optimization of surface roughness of AISI 304 austenitic stainless steel in dry turning operation using Taguchi design method”, Journal of Engineering Science and Technology, Vol. 5, No. 3, pp. 293-301, 2010

J. Z. Zhang, J. C. Chen, E. Daniel Kirby, “Surface roughness optimization in an end-milling operation using the Taguchi design method”, Journal of Materials Processing Technology, Vol. 184, No. 1-3, pp. 233-239, 2007 DOI: https://doi.org/10.1016/j.jmatprotec.2006.11.029

P. H. S. Campos, J. R. Ferreira, A. P. de Paiva, P. P. Balestrassi, J. P. Davim, “Modeling and optimization techniques in machining of hardened steels: a brief review”, Reviews on Advanced Material Science, Vol. 34, pp. 141-147, 2013

C. H. Che Haron, A. Ginting, H. Arshad, “Performance of alloyed uncoated and CVD-coated carbide tools in dry milling of titanium alloy Ti-6242S”, Journal of Materials Processing Technology, Vol. 185, No. 1-3, pp. 77-82, 2007 DOI: https://doi.org/10.1016/j.jmatprotec.2006.03.135

M. Nouari, A. Ginting, “Wear characteristics and performance of multi-layer CVD-coated alloyed carbide tool in dry end milling of titanium alloy”, Surface and Coatings Technology, Vol. 200, No. 18-19, pp. 5663-5676, 2006 DOI: https://doi.org/10.1016/j.surfcoat.2005.07.063

O. Belgasim, M. H. El-Axir, “Modeling of residual stresses induced in machining aluminum magnesium alloy (Al-3Mg)”, World Congress on Engineering 2010, Vol II, United Kingdom, June 30-July 2, 2010

M. N. Das, N. C. Giri, Design and Analysis of Experiments, 2nd edition, John Wiley, 1980

Downloads

How to Cite

[1]
El-Axir, M.H., Elkhabeery, M.M. and Okasha, M.M. 2017. Modeling and Parameter Optimization for Surface Roughness and Residual Stress in Dry Turning Process. Engineering, Technology & Applied Science Research. 7, 5 (Oct. 2017), 2047–2055. DOI:https://doi.org/10.48084/etasr.1560.

Metrics

Abstract Views: 1187
PDF Downloads: 733

Metrics Information