Considering FACTS in Optimal Transmission Expansion Planning

K. Soleimani, J. Mazloum

Abstract


The expansion of power transmission systems is an important part of the expansion of power systems that requires enormous investment costs. Since the construction of new transmission lines is very expensive, it is necessary to choose the most efficient expansion plan that ensures system security with a minimal number of new lines. In this paper, the role of Flexible AC Transmission System (FACTS) devices in the effective operation and expansion planning of transmission systems is examined. Effort was taken to implement a method based on sensitivity analysis to select the optimal number and location of FACTS devices, lines and other elements of the transmission system. Using this method, the transmission expansion plan for a 9 and a 39 bus power system was performed with and without the presence of FACTS with the use of DPL environment in Digsilent software 15.1. Results show that the use of these devices reduces the need for new transmission lines and minimizes the investment cost.


Keywords


transmission; expansion;FACTS;9 bus; 39 bus; DPL

Full Text:

PDF

References


A. Rouhani, S. H. Hosseini, M. Raoofat, “Composite generation and transmission expansion planning considering distributed generation”, International Journal of Electrical Power & Energy Systems, Vol. 62, No. 1, pp. 792-805, 2014

R. Hemmati, R. A. Hooshmand, A. Khodabakhshian, “Comprehensive review of generation and transmission expansion planning”, IET Generation, Transmission and Distribution, Vol. 7, No. 9, pp. 955–964, 2013

Y. Sun, C. Kang, Q. Xia, Q. Chen, N. Zhang, Y. Cheng, “Analysis of transmission expansion planning considering consumption-based carbon emission accounting”, Applied Energy, , Vol. 193, pp. 232–242, 2017

M. Asensio, G. Muñoz-Delgado, J. Contreras, “A Bi-level Approach to Distribution Network and Renewable Energy Expansion Planning considering Demand Response”, IEEE Transactions on Power Systems, Vol. PP, No. 99, pp. 885-895, 2017

P. V. Gomes, J. T. Saraiva, “Hybrid Genetic Algorithm for Multi-Objective Transmission Expansion Planning”, IEEE International Energy Conference (ENERGYCON), Belgium, April 4-8, 2016

T. Qiu, B. Xu, Y. Wang, Y. Dvorkin, D. S. Kirschen, “Stochastic Multi-Stage Co-Planning of Transmission Expansion and Energy Storage”, IEEE Transactions on Power Systems, Vol. 32, No. 1, pp. 643 - 651, 2017

F. Woolf, Global transmission expansion: recipes for success, PennWell Corp, 2003

H. Sun, D. C. Yu, “A multiple-objective optimization model of transmission enhancement planning for independent transmission company (ITC)”, Power Engineering Society Summer Meeting, Vol. 4, No. 1, pp. 2033-2038, 2000

J. Choi, A. A. El-Keib, T. Tran, “A fuzzy branch and bound-based transmission system expansion planning for the highest satisfaction level of the decision maker”, IEEE Transactions on Power Systems Vol. 20, No. 1, pp. 476-484, 2005

E. B. Cedeno, S Arora. “Performance comparison of Transmission Network Expansion Planning under deterministic and uncertain conditions”, International Journal of Electrical Power & Energy Systems, Vol. 33, No. 7, pp. 1288–1295, 2011

J. H. Zhao, J. Foster, Z. Y. Dong, K. P. Wong, “Flexible transmission network planning considering distributed generation impacts”, IEEE Transactions on Power Systems, Vol. 26, No. 3, pp. 1434-1443, 2011

G. Rothwell, T. Gomez, Electricity Economics: Regulation and Deregulation, IEEE, 2003

M. O. Buygi, G. Balzer, H. M. Shanechi, M. Shahidehpour, “Market-Based Transmission Expansion Planning”, IEEE Transactions on Power Systems, Vol. 19, No. 4, pp. 2060-2067, 2004.

A. H. Escobar, R. A. Gallego, R. Romero, “Multi-stage and Coordinated Planning of the Expansion of Transmission Systems”, IEEE Transactions on Power Systems, Vol. 19, No. 2, pp. 735-744, 2004

M. Xie, J. Zhong, F. F. Wu. “Multiyear Transmission Expansion Planning Using Ordinal Optimization”, IEEE Transactions on Power Systems, Vol. 22, No. 4, pp. 1420-1428, 2007

O. B. Tor, A. N. Guven, M. Shahidehpour, “Congestion-Driven Transmission Planning Considering the Impact of Generator Expansion”, IEEE Transactions on Power Systems, Vol. 23, No. 2, pp. 781-789, 2008

I. de J. Silva, M. J. Rider, R. Romero, A.V. Garcia, C.A. Murari. “Transmission network expansion planning with security constraints”, IEE Proceedings - Generation, Transmission and Distribution, Vol. 152, No. 6, pp. 828-836, 2005

N. Alguacil, A. L. Motto, A. J. Conejo. “Transmission Expansion Planning: A Mixed-Integer LP Approach”, IEEE Transactions on Power Systems, Vol. 18, No. 3, pp. 1070-1077, 2003

B. Human, and R.C. Peterson, Electric power planning, University of Washington, 1998

H. Abdi, Transmission Expansion Planning Based on Competitive Electricity Market, PhD Thesis, Tarbiat Modares University, 2006

A. Rouhani, M. R. Safari Tirtashi, R. Noroozian, “Combined Design of PSS and STATCOM Controllers for Power System Stability Enhancement”, Journal of Power Electronics, Vol. 11, No. 5, pp. 734-742, 2011

R. A. Hooshmand, M. Banejad, G. Isazadeh, “Management of power flow of transmission lines in disturbed conditions using UPFC”, Australian Universities Power Engineering Conference, Australia, 2007

G. A. Blanco, Optimal transmission expansion planning with FACTS, in: Electrical Engineering, National University of San Juan, Argentina, 2010

G. A. Blanco, F. G. Olsina, O. A. Ojeda, F. F. Garces. “Transmission expansion planning under uncertainty: the role of FACTS in providing strategic flexibility”, IEEE Power Tech, Bucharest, 2009

H.Seifi, M. S. Sepasian, Electric Power System Planning, Springer Berlin Heidelberg, pp.144-146, 2011

M. Arun Bhaskar, A. Indhirani, “Impact of FACTS devices on distance protection in transmission system”, IEEE National Conference on Emerging Trends In New & Renewable Energy Sources And Energy Management, Chennai, pp. 52-58, 2014

K. Satyanarayana, B. K. V. Prasad, K. Saikrishna, “Effect of series FACTS devices on distance protection”, International Conference on Sustainable Energy and Intelligent Systems, pp. 36-41, 2011




eISSN: 1792-8036     pISSN: 2241-4487