Integration of Principal Component Analysis and Very Low Frequency Geophysical Method for Modeling Recharge Area Distribution
The Case Study of Krawak Spring, Tuban
Received: 8 February 2025 | Revised: 11 March 2025 | Accepted: 19 March 2025 | Online: 4 June 2025
Corresponding author: Adi Susilo
Abstract
Recharge areas play an important role in the subsurface hydrological cycle, especially in karst regions such as Tuban Regency, which has unique hydrological and topographical conditions with steep morphology. This research was conducted around the Krawak spring, as this spring is very important for the needs of the surrounding community, so it must be maintained to ensure that the land function does not change, especially the recharge area, thus preserving the sustainability of the Krawak spring. Considering the difficult terrain for direct field surveys, this research utilizes a machine learning method based on Principal Component Analysis (PCA) with Very Low Frequency (VLF) data and Landsat-8 satellite imagery as supporting data. VLF data are used as training data for the machine learning model, whereas Landsat-8 imagery serves as the main data source, which is processed to produce five classification parameters, namely Normalized Difference Vegetation Index (NDVI), land cover, elevation, slope, and soil type. The results of this classification are then weighted and scored to produce a map of the potential recharge area distribution. The results of the PCA analysis show consistency with conventional scoring methods as well as the results from VLF data, making this method effective for mapping recharge areas in regions with challenging topography. This research provides an efficient and accurate alternative for modeling recharge areas in karst environments, where with direct field surveys are limited.
Keywords:
PCA, recharge area, machine learning, VLF, Landsat-8Downloads
References
C. Asdak, Hidrologi dan pengelolaan daerah aliran sungai. Yogyakarta, Indonesia: Gadjah Mada University Press, 2002.
M. Riastika, "Pengelolaan Air Tanah Berbasis Konservasi di Recharge Area Boyolali (Studi Kasus Recharge Area Cepogo, Boyolali, Jawa Tengah)," Jurnal Ilmu Lingkungan, vol. 9, no. 2, pp. 86–97, Oct. 2012.
S. Heri, "8 Kecamatan di Tuban Dilanda Kekeringan." Situs Resmi Pemerintah Kabupaten Tuban. https://tubankab.go.id/entry/8-kecamatan-di-tuban-dilanda-kekeringan.
E. Maulana, "Analysis of Land Capability in Alluvial Plain and Volcanic Slope of Rembang District using Landforms Approach," in 2nd International Conference of Indonesian Society for Remote Sensing Remote Sensing for a Better Governance, Yogyakarta, Indonesia, 2016, pp. 252–259.
R. W. Van Bemmelen, The Geology of Indonesia, vol. I.A. General Geology. The Hague, Netherlands: Martinus Nyhoff, 1949.
A. Muhartanto, D. S. Hidartan Djohor, S. Djohor, and N. Mukti, Kawasan Karst Gunung Sewu & Potensinya. Jakarta, Indonesia: FTKE Universitas Trisakti, 2007.
N. Coppo, P.-A. Schnegg, M. Défago, and GSCB, "Mapping a shallow large cave using a high-resolution Very Low Frequency Electromagnetic Method," in 8th Conference on Limestone Hydrogeology, Neuchâtel, Switzerland, 2006, pp. 71–74.
M. S. Putri, "Aplikasi Filter NA-MEMD pada Data VLF-EM untuk Mengidentifikasi Kemenerusan Sungai Bawah Permukaan (Studi Kasus Desa Sekar, Pacitan)," B.S. thesis, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, 2020.
F. S. Wardhana, "Identifikasi Kemenerusan Sistem Sungai Bawah Permukaan Kawasan Karst Dersono Pacitan dengan Metode VLF-EM," B.S. thesis, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, 2019.
R. M. Sampurno and A. Thoriq, "Klasifikasi Tutupan Lahan Menggunakan Citra Landsat 8 Operational Land Imager (Oli) di Kabupaten Sumedang," Teknotan: Jurnal Industri Teknologi Pertanian, vol. 10, no. 2, pp. 61–70, Nov. 2016.
N. S. Magesh, N. Chandrasekar, and J. P. Soundranayagam, "Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques," Geoscience Frontiers, vol. 3, no. 2, pp. 189–196, Mar. 2012.
N. F. Che Nordin, N. S. Mohd, S. Koting, Z. Ismail, M. Sherif, and A. El-Shafie, "Groundwater quality forecasting modelling using artificial intelligence: A review," Groundwater for Sustainable Development, vol. 14, Aug. 2021, Art. no. 100643.
H. R. Pourghasemi, N. Sadhasivam, S. Yousefi, S. Tavangar, H. Ghaffari Nazarlou, and M. Santosh, "Using machine learning algorithms to map the groundwater recharge potential zones," Journal of Environmental Management, vol. 265, Jul. 2020, Art. no. 110525.
G. Martinsen et al., "Developing a pan-European high-resolution groundwater recharge map – Combining satellite data and national survey data using machine learning," Science of The Total Environment, vol. 822, May 2022, Art. no. 153464.
S. Abdelaziz, M. I. Gad, and A. H. M. H. El Tahan, "Groundwater quality index based on PCA: Wadi El-Natrun, Egypt," Journal of African Earth Sciences, vol. 172, Dec. 2020, Art. no. 103964.
J. B. F. Moreira, S. H. Yuwanto, and E. Mahardjo, "Pemetaan Geologi dan Penentuan Lingkungan Pengendapan Batugamping Berdasarkan Analisis Petrografis di Kecamatan Semanding dan Sekitarnya Kabupaten Tuban Provinsi Jawa Timur," Prosiding Seminar Teknologi Kebumian dan Kelautan, vol. 1, no. 1, pp. 154–163, Sep. 2019.
R. Faizal, S. Sismanto, R. Handayani, and A. Asta, "Pendugaan Aliran Sungai Bawah Tanah Dalam Pemenuhan Kebutuhan Air Masyarakat Desa Hargosari Gunungkidul Berdasarkan Data VLF-EM Terkoreksi Topografi," Borneo Engineering : Jurnal Teknik Sipil, vol. 1, no. 2, pp. 44–53, Dec. 2017.
T. W. Githinji, E. W. Dindi, Z. N. Kuria, and D. O. Olago, "Application of analytical hierarchy process and integrated fuzzy-analytical hierarchy process for mapping potential groundwater recharge zone using GIS in the arid areas of Ewaso Ng’iro – Lagh Dera Basin, Kenya," HydroResearch, vol. 5, pp. 22–34, Jan. 2022.
M. K. Villareal and A. F. Tongco, "Remote Sensing Techniques for Classification and Mapping of Sugarcane Growth," Engineering, Technology & Applied Science Research, vol. 10, no. 4, pp. 6041–6046, Aug. 2020.
M. Makonyo and M. M. Msabi, "Identification of groundwater potential recharge zones using GIS-based multi-criteria decision analysis: A case study of semi-arid midlands Manyara fractured aquifer, North-Eastern Tanzania," Remote Sensing Applications: Society and Environment, vol. 23, Aug. 2021, Art. no. 100544.
M. V. Japitana and M. E. C. Burce, "A Satellite-based Remote Sensing Technique for Surface Water Quality Estimation," Engineering, Technology & Applied Science Research, vol. 9, no. 2, pp. 3965–3970, Apr. 2019.
I. Batioua, R. Benouini, K. Zenkouar, and A. Zahi, "Image classification using separable invariants moments based on Racah polynomials," Procedia Computer Science, vol. 127, pp. 320–327, 2018.
M. P. Uddin, M. A. Mamun, and M. A. Hossain, "Feature extraction for hyperspectral image classification," in 2017 IEEE Region 10 Humanitarian Technology Conference, Dhaka, Bangladesh, 2017, pp. 379–382.
E. B. Troccoli, A. G. Cerqueira, J. B. Lemos, and M. Holz, "K-means clustering using principal component analysis to automate label organization in multi-attribute seismic facies analysis," Journal of Applied Geophysics, vol. 198, Mar. 2022, Art. no. 104555.
Y. Liu and L. Wu, "Geological Disaster Recognition on Optical Remote Sensing Images Using Deep Learning," Procedia Computer Science, vol. 91, pp. 566–575, 2016.
W. F. Hendria, Q. T. Phan, F. Adzaka, and C. Jeong, "Combining transformer and CNN for object detection in UAV imagery," ICT Express, vol. 9, no. 2, pp. 258–263, Apr. 2023.
P. More and P. Mishra, "Enhanced-PCA based Dimensionality Reduction and Feature Selection for Real-Time Network Threat Detection," Engineering, Technology & Applied Science Research, vol. 10, no. 5, pp. 6270–6275, Oct. 2020.
J. A. Telaumbanua, C. Prasetyadi, and A. Subandrio, "Geologi dan Studi Lingkungan Pengendapan Formasi Ngrayong Daerah Mulyoagung dan Sekitarnya, Kecamatan Singgahan, Kabupaten Tuban, Provinsi Jawa Timur," Jurnal Ilmiah Geologi Pangea, vol. 3, no. 1, pp. 39–49, Jun. 2016.
M. S. Purwanto et al., "Penentuan Recharge Area Pada Kabupaten Tanah Datar Menggunakan Citra Landsat 8 dan Sistem Informasi Geografis (SIG)," Jurnal Geosaintek, vol. 8, no. 3, pp. 242–249, Dec. 2022.
E. Parizi, S. M. Hosseini, B. Ataie-Ashtiani, and C. T. Simmons, "Normalized difference vegetation index as the dominant predicting factor of groundwater recharge in phreatic aquifers: case studies across Iran," Scientific Reports, vol. 10, no. 1, Oct. 2020, Art. no. 17473.
T. Murtono, A. M. Imran, and M. A. Thaha, "Zonasi Imbuhan Air Tanah Pada Daerah Aliran Sungai Lahumbuti Provinsi Sulawesi Tenggara," Geosains, vol. 9, no. 2, pp. 89–98, 2013.
A. N. Kholis and M. I. Rendra, "Potensi Resapan Air Tanah di Kabupaten Bojonegoro Dengan Pendekatan GIS," RADIAL: JuRnal PerADaban SaIns RekAyasan dan TeknoLogi, vol. 10, no. 2, pp. 222–233, Dec. 2022.
M. Khoiri, L. M. Jaelani, and A. Widodo, "Landslides Hazard Mapping Using Remote Sensing Data in Ponorogo Regency, East Java," Internet Journal of Society for Social Management Systems, vol. 11, no. 2, pp. 100–109, Jul. 2018.
S. Amanah, "Pengaruh Kerusakan Hutan Lindung Krawak Terhadap Produktivitas Pertanian di Kecamatan Singgahan Kabupaten Tuban," Swara Bhumi, vol. 2, no. 1, pp. 126–134, May 2014.
T. Lillesand and R. W. Kiefer, Remote Sensing and Image Interpretation, 4th ed. Hoboken, NJ, USA: Wiley, 1999.
M. S. Purwanto, A. Susilo, A. S. Bahri, A. Naba, U. I. Sari, and A. T. W. Almais, "Mapping Underground River Flows in karst Areas with the VLF-EM Method (Case Study of the Krawak Region, Singgahan Tuban)," IOP Conference Series: Earth and Environmental Science, vol. 1307, no. 1, Feb. 2024, Art. no. 012005.
S. Purwanto et al., "Analysis and Mapping of the Distribution of Groundwater Recharge Areas Using the Scoring Method (Case Study: Singgahan and Montong District, Tuban).," IOP Conference Series: Earth and Environmental Science, vol. 1418, no. 1, Dec. 2024, Art. no. 012057.
Downloads
How to Cite
License
Copyright (c) 2025 Moh. Singgih Purwanto, Adi Susilo, Agus Naba, Ayi Syaeful Bahri, Siti Navisa

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.