A Hijaiyah Letters Sign Language Recognition Approach utilizing Deep Learning

Authors

  • Dadang Priyanto Faculty of Engineering, Department of Computer Science, Universitas Bumigora, Indonesia
  • Hairani Faculty of Engineering, Department of Computer Science, Universitas Bumigora, Indonesia
Volume: 15 | Issue: 3 | Pages: 22452-22458 | June 2025 | https://doi.org/10.48084/etasr.10285

Abstract

Sign language was created as a means of communication for individuals with hearing impairments. However, learning sign language is not easy and requires significant effort and dedication, posing challenges for deaf children. Mastering sign language, particularly the Arabic alphabet (Hijaiyah), is particularly demanding and necessitates specialized learning tools to enhance comprehension. The limited number of sign language teachers and the complexity of the learning process pose significant challenges at Sekolah Luar Biasa Negeri (SLBN) 1 Mataram. This study explores the use of a Logistic Regression (LR) algorithm to assist deaf students in learning Hijaiyah sign language. The dataset comprises 28 Hijaiyah letters. The process begins with data preprocessing to detect hands using hand detection landmarks, followed by the classification of the 28 Hijaiyah sign language gestures using LR. The study's results indicate that the proposed model had an accuracy rate of 96% in recognizing Hijaiyah sign language, demonstrating the algorithm's effectiveness for this application.

Keywords:

sign language, logistic regression, Hijaiyah letters, deaf, deep learning

Downloads

Download data is not yet available.

References

N. Anam, "Sistem Deteksi Simbol pada SIBI (Sistem Isyarat Bahasa Indonesia) Menggunakan Mediapipe dan Resnet-50," Universitas Dinamika, 2022.

M. I. Gunawan, D. Sugiarto, and I. Mardianto, "Peningkatan Kinerja Akurasi Prediksi Penyakit Diabetes Mellitus Menggunakan Metode Grid Seacrh pada Algoritma Logistic Regression," Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 6, no. 3, Dec. 2020, Art. no. 280.

K. M. O. Nahar, A. Almomani, N. Shatnawi, and M. Alauthman, "A Robust Model for Translating Arabic Sign Language into Spoken Arabic Using Deep Learning," Intelligent Automation & Soft Computing, vol. 37, no. 2, pp. 2037–2057, 2023.

R. O. Hasan, "Meningkatkan Kemampuan Mengenal Huruf Hijaiyah Melalui Media Papan Magnetik Pada Anak Tunagrahita Sedang Kelas VI SLB Karya Padang," Japanese J. Allergol., vol. 44, no. 1, pp. 11–18, 2016.

M. A. A. Mosleh, A. Assiri, A. H. Gumaei, B. F. Alkhamees, and M. Al-Qahtani, "A Bidirectional Arabic Sign Language Framework Using Deep Learning and Fuzzy Matching Score," Mathematics, vol. 12, no. 8, Apr. 2024, Art. no. 1155.

Z. A. Hussein, Q. O. Mosa, and A. Hussein Hammadi, "Grey Wolf Optimization-based Neural Network for Deaf and Mute Sign Language Recognition: Survey," BIO Web of Conferences, vol. 97, 2024, Art. no. 00051.

M. Asha, S. Arekatla, H. Vardhan Gara, and G. Narasimha Rao, "Sign Language Gesture Detection Using Deep Learning and Transfer Learning," Dogo Rangsang Res. J. UGC Care Gr. I J., vol. 12, no. 02, pp. 47–54, Sep. 2022.

I. Faturrahman, " Pengenalan Pola Huruf Hijaiyah Khat Kufi Dengan Metode Deteksi Tepi Sobel Berbasis Jaringan Syaraf Tiruan Backpropagation," Jurnal Teknik Informatika, vol. 11, no. 1, pp. 37–46, May 2018.

M. Cherrate, M. A. Sabri, Y. Ali, and A. Abdellah, "A deep learning approach with weighted voting for Moroccan sign classification." In Review, Nov. 14, 2023.

M. Sholawati, K. Auliasari, and Fx. Ariwibisono, " Pengembangan Aplikasi Pengenalan Bahasa Isyarat Abjad Sibi Menggunakan Metode Convolutional Neural Network (CNN)," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 6, no. 1, pp. 134–144, Mar. 2022.

Y. A. Gerhana et al., "Automatic Detection of Hijaiyah Letters Pronunciation using Convolutional Neural Network Algorithm," Jurnal Online Informatika, vol. 7, no. 1, pp. 123–131, Jun. 2022.

D. Mulya, "Classification of Hijaiyah Letters Using Hybrid CNN-CatBoost," Intelmatics, vol. 3, no. 2, pp. 39–44, Aug. 2023.

D. I. Mulyana, M. F. Lazuardi, and M. B. Yel, "Deteksi Bahasa Isyarat Dalam Pengenalan Huruf Hijaiyah Dengan Metode YOLOV5," Jurnal Teknik Elektro dan Komputasi (ELKOM), vol. 4, no. 2, pp. 145–151, Aug. 2022.

A. M. Buttar, U. Ahmad, A. H. Gumaei, A. Assiri, M. A. Akbar, and B. F. Alkhamees, "Deep Learning in Sign Language Recognition: A Hybrid Approach for the Recognition of Static and Dynamic Signs," Mathematics, vol. 11, no. 17, Aug. 2023, Art. no. 3729.

D. Permana and J. Sutopo, " Aplikasi Pengenalan Abjad Sistem Isyarat Bahasa Indonesia (sibi) Dengan Algoritma YOLOv5," Jurnal Simantec, vol. 11, no. 2, pp. 231–240, Jul. 2023.

A. A. P. Arnaz, " Implementasi Metode Learning Vector Quantization (lvq) Pada Pengenalan Bahasa Isyarat Yang Mengandung Kata Kerja," JAMI: Jurnal Ahli Muda Indonesia, vol. 3, no. 1, pp. 1–8, Jun. 2022.

A. R. T. H. Ririd, Y. Yunhasnawa, and Y. G. Buata, " Sistem Pengenalan Huruf Bahasa Isyarat Menggunakan Adaptive Learning Vector Quantization," Jurnal Informatika Polinema, vol. 4, no. 2, Feb. 2018, Art. no. 145.

M. Almahmood et al., "Translation from spoken Arabic digits to sign language based on deep learning approach," Applied and Computational Engineering, vol. 30, no. 1, pp. 25–31, Jan. 2024.

A. Nur and H. Nugroho, "Deteksi Fitur Huruf Sistem Isyarat Bahasa Indonesia menggunakan Metode Chain Code," POSITIF : Jurnal Sistem dan Teknologi Informasi, vol. 8, no. 1, pp. 36–40, Nov. 2022.

T. Ayer, J. Chhatwal, O. Alagoz, C. E. Kahn, R. W. Woods, and E. S. Burnside, "Comparison of Logistic Regression and Artificial Neural Network Models in Breast Cancer Risk Estimation," RadioGraphics, vol. 30, no. 1, pp. 13–22, Jan. 2010.

F. T. Kristanti, M. Y. Febrianta, D. F. Salim, H. A. Riyadh, and B. A. H. Beshr, "Predicting Financial Distress in Indonesian Companies using Machine Learning," Engineering, Technology & Applied Science Research, vol. 14, no. 6, pp. 17644–17649, Dec. 2024.

Downloads

How to Cite

[1]
Priyanto, D. and Hairani, . 2025. A Hijaiyah Letters Sign Language Recognition Approach utilizing Deep Learning. Engineering, Technology & Applied Science Research. 15, 3 (Jun. 2025), 22452–22458. DOI:https://doi.org/10.48084/etasr.10285.

Metrics

Abstract Views: 36
PDF Downloads: 58

Metrics Information