Determination of Zea Mays Plant Fertility Level in Automatic Fodder Systems using Supervised Learning based on GLCM and Physical Feature

Authors

  • Haryanto Department of Electrical Engineering, Faculty of Engineering, Universitas Trunojoyo Madura, Indonesia
  • Dwi Kuswanto Department of Informatic Engineering, Faculty of Engineering, Universitas Trunojoyo Madura, Indonesia
  • Dian Neipa Purnamasari Department of Electrical Engineering, Faculty of Engineering, Universitas Trunojoyo Madura, Indonesia
  • Lilik Anifah Department of Electrical Engineering, Faculty of Engineering, Universitas Negeri Surabaya, Indonesia
Volume: 15 | Issue: 1 | Pages: 20517-50522 | February 2025 | https://doi.org/10.48084/etasr.9809

Abstract

The problem during the dry season is the availability of animal feed, especially for cattle. One of the efforts made is to use fermented feed and corn fodder. Automated feedstock monitoring and control is one of the technologies that has been developed. This study proposes a method to determine the fertility of Zea May sp plants in automatic fodder using supervised learning based on Self-Organizing Map (SOM), Gray Level Co-occurrence Matrix (GLCM), and physical features. The results showed that the system worked satisfactorily, where both methods achieved an accuracy of 93.5% on 3-day Zea Mays fodder using SOM and the highest on 12-day Zea Mays fodder using both methods with an accuracy of 96%. Although this system has shown good performance using both SOM and K-means, in some conditions, K-means achieved higher performance. These contributions are expected to help farmers provide animal feed.

Keywords:

SOM, k Means, zea mays, Beluga Whale Optimizer (BWO), GLCM

Downloads

Download data is not yet available.

References

F. Asy, "Kemarau Panjang Ternak Sapi di Belu Kesulitan Pakan," rri.co.id - Portal berita terpercaya. https://www.rri.co.id/ntt/umkm/

/kemarau-panjang-ternak-sapi-di-belu-kesulitan-pakan.

A. Ibrahim, "Musim Kemarau, Peternak Sapi di Gorontalo Kesulitan Dapatkan Pakan Ternak," liputan6.com, Oct. 10, 2023. https://www.liputan6.com/regional/read/5418457/musim-kemarau-peternak-sapi-di-gorontalo-kesulitan-dapatkan-pakan-ternak.

G. Dar, "Musim Kemarau, Peternak Sapi Kesulitan Pakan dan Air Minum," balipost.com, Oct. 03, 2023. https://www.balipost.com/

news/2023/10/03/365638/Musim-Kemarau,Peternak-Sapi-Kesulitan.html.

"Kekeringan, Peternak di Semarang Kesulitan Mendapatkan Rumput untuk Pakan Sapi," kompas.com, Sep. 13, 2023. https://regional.kompas.com/read/2023/09/13/153952678/kekeringan-peternak-di-semarang-kesulitan-mendapatkan-rumput-untuk-pakan.

I. G. L. O. Cakra, B. R. T. Putri, I. K. Budaarsa, N. M. S. Sukmawati, and A. A. P. P. Wibawa, "Penerapan Teknologi Silase Ransum Komplit Dalam Upaya Mengatasi kekurangan Pakan Pada Musim Kemarau di Dusun Geliang Desa Pempatan," Buletin Udayana Mengabdi, vol. 17, no. 1, Jan. 2018, Art. no. 92.

S. S. Malalantang, M. M. Telleng, W. B. Kaunang, M. R. Waani, and S. Sane, "Silase Sebagai Salah Satu Solusi Mengatasi Kekurangan Hijauan Pakan di Desa Kasuratan Kecamatan Remboken Kabupaten Minahasa," Prosiding Seminar Nasional Pembangunan dan Pendidikan Vokasi Pertanian, vol. 4, no. 1, pp. 429–433, Sep. 2023.

I. Gurawal, R. Rawendra, A. Warnaen, and A. K. Jaliyah, "Pertumbuhan dan Kandungan Nutrien Fodder Jagung (Zea mays) dengan Penyiraman Biourine Sapi," Jurnal Peternakan Indonesia (Indonesian Journal of Animal Science), vol. 24, no. 1, Feb. 2022, Art. no. 21.

L. Liman, S. Tantalo, M. Muhtarudin, and K. Adhianto, "Effect of Substitution of Corn (Zea mays) Fodder with Sorghum (Sorghum bicolor var. Numbu) Fodder on Nutrient Digestibility and Daily Weight Gain of Beef Cattle," Journal of Agricultural Sciences, vol. 18, no. 3, pp. 329–336, 2023.

L. Ru, Z. Shu-ying, M. Deng-feng, and Z. Yong-feng, "Design of Raindrop detector based on Arduino," in 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, Apr. 2021, pp. 1145–1148.

Haryanto, M. Ulum, A. F. Ibadillah, R. Alfita, K. Aji, and R. Rizkyandi, "Smart aquaponic system based Internet of Things (IoT)," Journal of Physics: Conference Series, vol. 1211, no. 1, Dec. 2019, Art. no. 012047.

P. S. Raghavendran et al., "Microcontroller Based Efficient Automated Cattle Fodder System," International Journal of Innovative Technology and Exploring Engineering, vol. 9, no. 2, pp. 2484–2486, Dec. 2019.

A. Madhuri, K. Jaswanth, B. Bhavana, K. B. Shankar, J. Sampath, and B. S. Prasad, "Auto Indoor Hydroponic Fodder Grow Chamber Using IoT," International Journal of Recent Advances in Multidisciplinary Topics, vol. 4, no. 12, pp. 40–45, Dec. 2023.

L. D. Bakti et al., "Data extraction of the gray level Co-occurrence matrix (GLCM) Feature on the fingerprints of parents and children in Lombok Island, Indonesia," Data in Brief, vol. 36, Jun. 2021, Art. no. 107067.

F. Utaminingrum et al., "Feature selection of gray-level Cooccurrence matrix using genetic algorithm with Extreme learning machine classification for early detection of Pole roads," Results in Engineering, vol. 20, Dec. 2023, Art. no. 101437.

H. Hong, L. Zheng, and S. Pan, "Computation of gray-level co-occurrence matrix based on CUDA and its optimization." arXiv, Oct. 17, 2017.

S. Licen, A. Astel, and S. Tsakovski, "Self-organizing map algorithm for assessing spatial and temporal patterns of pollutants in environmental compartments: A review," Science of The Total Environment, vol. 878, Jun. 2023, Art. no. 163084.

K. Habermann and E. V. Toerne, "Self-Organizing Maps in High Energy Physics," Journal of Physics: Conference Series, vol. 2438, no. 1, Feb. 2023, Art. no. 012120.

A. N. Alkawaz et al., "Adaptive Self-Organizing Map Using Optimal Control," Mathematics, vol. 11, no. 9, Apr. 2023, Art. no. 1995.

J. Zhang, L. Cao, M. Zhang, and W. Fu, "Extracting the Brain-Like Representation by an Improved Self-Organizing Map for Image Classification," in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, Jun. 2023, pp. 1–5.

K. S. Pranata, A. A. S. Gunawan, and F. L. Gaol, "Development clustering system IDX company with k-means algorithm and DBSCAN based on fundamental indicator and ESG," Procedia Computer Science, vol. 216, pp. 319–327, 2023.

R. H. Maharrani, P. D. Abda’u, and M. N. Faiz, "Clustering method for criminal crime acts using K-means and principal component analysis," Indonesian Journal of Electrical Engineering and Computer Science, vol. 34, no. 1, Apr. 2024, Art. no. 224.

J. L. García-Balboa, M. V. Alba-Fernández, F. J. Ariza-López, and J. Rodríguez-Avi, "Analysis of Thematic Similarity Using Confusion Matrices," ISPRS International Journal of Geo-Information, vol. 7, no. 6, Jun. 2018, Art. no. 233.

I. Düntsch and G. Gediga, "Confusion Matrices and Rough Set Data Analysis," Journal of Physics: Conference Series, vol. 1229, no. 1, May 2019, Art. no. 012055.

R. Sharma, N. Kumar, and B. B. Sharma, "Applications of Artificial Intelligence in Smart Agriculture: A Review," in Recent Innovations in Computing, vol. 832, P. K. Singh, Y. Singh, M. H. Kolekar, A. K. Kar, and P. J. S. Gonçalves, Eds. Springer Singapore, 2022, pp. 135–142.

S. J. Oad, H. Maqsood, A. L. Qureshi, S. Ahmed, I. A. Channa, and M. I. Ali, "Farm-based Evaluation of Sustainable Alternative Irrigation Practices," Engineering, Technology & Applied Science Research, vol. 9, no. 3, pp. 4310–4314, Jun. 2019.

Downloads

How to Cite

[1]
Haryanto, ., Kuswanto, D., Purnamasari, D.N. and Anifah, L. 2025. Determination of Zea Mays Plant Fertility Level in Automatic Fodder Systems using Supervised Learning based on GLCM and Physical Feature. Engineering, Technology & Applied Science Research. 15, 1 (Feb. 2025), 20517–50522. DOI:https://doi.org/10.48084/etasr.9809.

Metrics

Abstract Views: 32
PDF Downloads: 15

Metrics Information

Most read articles by the same author(s)