Compressive Strength Analysis of Renewable Mortar after Portland Cement Replacement with Waste Ash

Authors

  • Muhammad Syarif Department of Architecture, Faculty of Engineering, Muhammadiyah Makassar University, Indonesia
  • Abdul Rakhim Nanda Department of Civil Engineering, Faculty of Engineering, Muhammadiyah Makassar University, Indonesia
  • Nurnawaty Department of Civil Engineering, Faculty of Engineering, Muhammadiyah Makassar University, Indonesia
  • Hamzah Al Imran Department of Civil Engineering, Faculty of Engineering, Muhammadiyah Makassar University, Indonesia
  • Nenny Karim Department of Civil Engineering, Faculty of Engineering, Muhammadiyah Makassar University, Indonesia
  • Andi Yusri Department of Architecture, Faculty of Engineering, Muhammadiyah Makassar University, Indonesia
Volume: 14 | Issue: 4 | Pages: 15056-15061 | August 2024 | https://doi.org/10.48084/etasr.7489

Abstract

There are many environmental problems caused by factory waste. Sugar factory waste, in the form of bagasse ash, and PLTU factory waste, in the form of fly ash, are currently in the spotlight of science studies. This study used waste bagasse and fly ash to substitute Portland cement as the main ingredients for mortar. Baggash and fly ash waste were collected, processed, and then used to replace cement by up to 40% to determine to what extent they could be used in brick masonry work, wall plastering, and masonry paste. Experimental tests were carried out on mortar cube samples measuring 5×5×5 cm, comparing four types of samples consisting of Portland cement, bagasse ash, and fly ash. The compressive strength results were obtained after 28 days. Normal Mortar (MN=11.75 MPa) had higher compressive strength than the substitute mortar types MA (3.23 MPa), MB (3.09 MPa), and MC (2.98) MPa. According to SNI 6882-2014, MA, MB, and MC mortars can be used as O-type mortar (2.4 MPa). Therefore, they can be applied to wall plastering or walls not bearing loads.

Keywords:

compressive strength, renewable mortar, wall plastering, paste, cement

Downloads

Download data is not yet available.

References

M. Syarif et al., "Development and assessment of cement and concrete made of the burning of quinary by-product," Journal of Materials Research and Technology, vol. 15, pp. 3708–3721, Nov. 2021. DOI: https://doi.org/10.1016/j.jmrt.2021.09.140

M. Syarif and M. W. Tjaronge, "A Comparison of Organic Cement Made from Recycled Waste Material and Portland Cement," Engineering, Technology & Applied Science Research, vol. 11, no. 4, pp. 7442–7445, Aug. 2021. DOI: https://doi.org/10.48084/etasr.4323

M. Syarif, V. Sampebulu, M. Wihardi Tjaronge, and Nasruddin, "Characteristic of compressive and tensile strength using the organic cement compare with portland cement," Case Studies in Construction Materials, vol. 9, Dec. 2018, Art. no. e00172. DOI: https://doi.org/10.1016/j.cscm.2018.e00172

M. Syarif, A. Yusri, M. Amir, Nasrullah, and S. Suryaningsi, "Reducing the use of cement with marble waste for seaside concrete construction through the Graphite Carbon Particles system," ARPN Journal of Engineering and Applied Sciences, pp. 1615–1623, Sep. 2023. DOI: https://doi.org/10.59018/0723201

R. Harmayani, N. A. Fajri, N. M. A. Kartika, and M. S. Ihsan, "Komposisi Kimia Limbah Ampas Tebu Sebagai Pakan Ruminansia," AGRIPTEK (Jurnal Agribisnis dan Peternakan), vol. 1, no. 2, pp. 35–40, Aug. 2021.

M. S. Kırgız and M. Syarif, "New hydraulic binder and binder based material with burning pulverised coal ash, household waste, Mediterranean soil, and calcined clay waste," in Advance Upcycling of By-Products in Binder and Binder-Based Materials, M. S. Kırgız, Ed. Woodhead Publishing, 2024, pp. 123–142. DOI: https://doi.org/10.1016/B978-0-323-90791-0.00004-4

M. Syarif, A. Yusri, and E. Bachtiar, "Utilization of Marble-Cement Powder Modified with Graphite Carbon Particles on Concrete Construction for Buildings in Seaside Areas," Jurnal Teknologi, vol. 85, no. 6, pp. 37–45, Sep. 2023. DOI: https://doi.org/10.11113/jurnalteknologi.v85.20196

M. S. Kırgız et al., "Synthesis, physico-mechanical properties, material processing, and math models of novel superior materials doped flake of carbon and colloid flake of carbon," Journal of Materials Research and Technology, vol. 15, pp. 4993–5009, Nov. 2021. DOI: https://doi.org/10.1016/j.jmrt.2021.10.089

N. Bheel et al., "Effect of calcined clay and marble dust powder as cementitious material on the mechanical properties and embodied carbon of high strength concrete by using RSM-based modelling," Heliyon, vol. 9, no. 4, Apr. 2023, Art. no. e15029. DOI: https://doi.org/10.1016/j.heliyon.2023.e15029

M. Syarif, "Analisis Sifat Fisik Semen Organik Terbuat dari Bahan Limbah Daur Ulang," Jurnal Linears, vol. 2, no. 1, pp. 18–23, Mar. 2019. DOI: https://doi.org/10.26618/j-linears.v2i1.3024

M. Syarif, V. Sampebulu, M. W. Tjaronge, and N. Junus, "Substituci Sampah Organik Dan Tanah Mediteran Menjadi Semen Alternatif Selain Semen Portland," Jurnal Teknosains, vol. 7, no. 2, pp. 119–127, Sep. 2018. DOI: https://doi.org/10.22146/teknosains.33708

V. Karikatti, M. V. Chitawadagi, M. Devarangadi, J. Sanjith, and N. Gangadhara Reddy, "Influence of bagasse ash powder and marble powder on strength and microstructure characteristics of alkali activated slag concrete cured at room temperature for rigid pavement application," Cleaner Materials, vol. 9, Sep. 2023, Art. no. 100200. DOI: https://doi.org/10.1016/j.clema.2023.100200

Erniati, M. W. Tjaronge, Zulharnah, and U. R. Irfan, "Porosity, Pore Size and Compressive Strength of Self Compacting Concrete Using Sea Water," Procedia Engineering, vol. 125, pp. 832–837, Jan. 2015. DOI: https://doi.org/10.1016/j.proeng.2015.11.045

L. Sequeira, B. Cantero, M. Bravo, J. de Brito, and C. Medina, "The Influence of Recycled Cement, Fly Ash, and Magnesium Oxide on the Mechanical Performance of Sustainable Cementitious Materials," Materials, vol. 16, no. 7, Jan. 2023, Art. no. 2760. DOI: https://doi.org/10.3390/ma16072760

S. Roberto da Silva, J. de Brito, and J. J. de O. Andrade, "Synergic effect of recycled aggregate, fly ash, and hydrated lime in concrete production," Journal of Building Engineering, vol. 70, Jul. 2023, Art. no. 106370. DOI: https://doi.org/10.1016/j.jobe.2023.106370

P. T. Bui, K. Minh Hung, L. Thi Thanh Tam, L. Hoang Sang, and T. P. Huynh, "Short-term performance of cement paste with high-volume fly ash: Effect of silica fume addition," Materials Today: Proceedings, Mar. 2023. DOI: https://doi.org/10.1016/j.matpr.2023.03.133

C. Lu, Z. Pang, H. Chu, and C. K. Y. Leung, "Experimental and numerical investigation on the long-term performance of engineered cementitious composites (ECC) with high-volume fly ash and domestic polyvinyl alcohol (PVA) fibers," Journal of Building Engineering, vol. 70, Jul. 2023, Art. no. 106324. DOI: https://doi.org/10.1016/j.jobe.2023.106324

L. T. Phieu, D. C. Chanh, V. H. Vu, H. V. K. Kha, and T. P. Huynh, "Enhancement of early-age properties of high-volume fly ash–cement paste with hydrated lime powder," Materials Today: Proceedings, Mar. 2023.

Y. Sun and H. S. Lee, "Using ensemble model to predict isothermal hydration heat of fly ash cement paste considering fly ash content, water to binder ratio and curing temperature," Case Studies in Construction Materials, vol. 18, Jul. 2023, Art. no. e01984. DOI: https://doi.org/10.1016/j.cscm.2023.e01984

S. França et al., "Feasibility of Using Sugar Cane Bagasse Ash in Partial Replacement of Portland Cement Clinker," Buildings, vol. 13, no. 4, Apr. 2023, Art. no. 843. DOI: https://doi.org/10.3390/buildings13040843

S. A. Chandio, B. A. Memon, M. Oad, F. A. Chandio, and M. U. Memon, “Effect of Fly Ash on the Compressive Strength of Green Concrete,” Engineering, Technology & Applied Science Research, vol. 10, no. 3, pp. 5728–5731, Jun. 2020. DOI: https://doi.org/10.48084/etasr.3499

V. T. Phan and T. H. Nguyen, “The Influence of Fly Ash on the Compressive Strength of Recycled Concrete Utilizing Coarse Aggregates from Demolition Works,” Engineering, Technology & Applied Science Research, vol. 11, no. 3, pp. 7107–7110, Jun. 2021. DOI: https://doi.org/10.48084/etasr.4145

Spesificasi Mortar Untuk Pekerjaan Pasangan, SNI 03-6882-2002, 2002.

Spesifikasi Mortar Untuk Pekerjaan Pasangan. Badan Standardisasi Nasional, Sni 03-6882-2014, 2014.

A. Wiyono, A. Karjanto, and G. D. Pandulu, "Pengaruh Pengganti Sebagian Semen Dengan Abu Ampas Tebu Terhadap Kualitas Mortar Berdasarkan Kuat Tekan Dan Penyerapan Air," eUREKA : Jurnal Penelitian Teknik Sipil dan Teknik Kimia, vol. 1, no. 1, Mar. 2017.

R. A. Sati, F. Supriani, and Y. Afrizal, "Pengaruh Variasi Penggunaan Abu Ampas Tebu (AAT) dan Abu Batu (AB) sebagai Bahan Pengganti Sebagian Semen terhadap Kuat Tekan Mortar," Inersia: Jurnal Teknik Sipil, vol. 11, no. 1, pp. 13–18, Sep. 2019. DOI: https://doi.org/10.33369/ijts.11.1.13-18

Satandar Spesifikasi Agregat Halu Untuk Pekerjaan Adukan Dan Plasteran Dengan Bahan Dasar Semen, SNI 03-6820, 2002.

Standard Specification for Concrete Aggregates, ASTM C33/C33M-18, 2018.

A. Kusumah, A. S. Srie Gunarti, and S. Nuryati, "Perbandingan Kuat Tekan Mortar Menggunakan Air Saluran Tarum Barat dan Air Bersih," Bentang, vol. 4, no. 2, 2016, Art. no. 262577.

G. P. Rompas, J. D. Pangouw, R. Pandaleke, and J. B. Mangare, "Pengaruh pemanfaatan abu ampas tebu sebagai substitusi parsial semen dalam campuran beton ditinjau terhadap kuat tarik lentur dan modulus elastisitas," Jurnal Sipil Statik, vol. 1, no. 2, Jan. 2013.

A. E. Putra, Z. Djauhari, and E. Yuniarto, "Pemanfaatan Abu Ampas Tebu Sebagai Bahan Substitusi Semen Terhadap Karakteristik Bata Beton Pejal," Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains, vol. 6, pp. 1–8, 2019.

R. Pandaleke, "Kajian Experimental Sifat Karekteristik Mortar Yang Menggunakan Abu Ampas Tebu Sebagai Substitusi Parsial Semen," Tekno Sipil, vol. 12, no. 60, pp. 57-63, Apr. 2014.

Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM C618-22, 2022.

M. Setiawati, "Fly Ash Sebagai Bahan Pengganti Semen Pada Beton," in Prosiding Semnastek, Jakarta, Indonesia, Oct. 2018.

D. Kabir, I. Imran, and M. A. Sultan, "Penggunaan Fly Ash Sebagai Bahan Tambah Pada Proses Pembuatan Mortar dengan Bahan Dasar Pasir Apung," Techno: Jurnal Penelitian, vol. 7, no. 2, pp. 157–164, Dec. 2018. DOI: https://doi.org/10.33387/tk.v7i2.725

S. Zuraidah and B. Hastono, "Pengaruh Variasi Komposisi Campuran Mortar Terhadap Kuat Tekan," Ge-STRAM: Jurnal Perencanaan dan Rekayasa Sipil, vol. 1, no. 1, pp. 8–13, Mar. 2018. DOI: https://doi.org/10.25139/jprs.v1i1.801

Metode Pengujian Kuat Tekan Mortar Semen Portland Untuk Pekerjaan Sipi, SNI 6825-2002, 2002.

Downloads

How to Cite

[1]
Syarif, M., Nanda, A.R., Nurnawaty, ., Imran, H.A., Karim, N. and Yusri, A. 2024. Compressive Strength Analysis of Renewable Mortar after Portland Cement Replacement with Waste Ash. Engineering, Technology & Applied Science Research. 14, 4 (Aug. 2024), 15056–15061. DOI:https://doi.org/10.48084/etasr.7489.

Metrics

Abstract Views: 192
PDF Downloads: 331

Metrics Information