Recovery of Nickel from Reformer Catalysts of Direct Reduction, Using the Pressurized Dissolving Method in Nitric Acid

Authors

  • B. Abrar Department of Materials Science and Technology, Sharif University of Technology, Tehran, Iran
  • M. Halali Department of Materials Science and Technology, Sharif University of Technology, Tehran, Iran
  • A. Pourfathi Department of Materials Science and Technology, Sharif University of Technology, Tehran, Iran
Volume: 6 | Issue: 5 | Pages: 1158-1161 | October 2016 | https://doi.org/10.48084/etasr.731

Abstract

In the process of direct reduction of iron pellet and production of sponge iron, NiO/Al2O3 act as a catalyst for the generation of carbon monoxide and hydrogen by vapor and natural gas. As an expensive material used in MIDREX method for steel units, this type of catalyst has major environmental problems after accumulation. The steel industry in Iran hopes to employ the MIDREX technique for the 80 percent of the 50 million tons of steel. Thus, the problem of spent catalysts will become a serious environmental challenge. Through the hydrometallurgy method, the present study investigates a possible solution to the problem of catalyst depot (due to heavy metals such as nickel) via nickel recovery, which may increase the possibility of selling or re-using the precious and expensive metal. The present research studied the Nickel recovery from spent catalysts of NiO/Al2O¬3 used in reduction gas reliefs of the production of sponge iron unit. In this study, the parameters of temperature, concentration, time and Rpm were studied using pressurized dissolving method. 100% efficiency was achieved at 140 °C for 120 minutes, nitric acid concentration of 1.5 mm, Rpm of 600 and 40 s/l 40 grams per liter.

Keywords:

catalyst, high-pressure hydrogenation, nitric acid, nickel

Downloads

Download data is not yet available.

References

J. Y. Lee, S. V. Rao, B. N. Kumar, D. J. Kang, B. R. Reddy.,”Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation”, Journal of Hazardous Materials, Vol. 176, pp. 1122-1125, 2009 DOI: https://doi.org/10.1016/j.jhazmat.2009.11.137

R. P. Silvy, “Future trends in refining catalyst market”, Appl. Catal., Vol. 261, pp. 247–252, 2004 DOI: https://doi.org/10.1016/j.apcata.2003.11.019

P. Dufresne, “Hydroprocessing catalysts regeneration and recycling”, Appl. Catal. A: Gen., Vol. 322, pp. 67–75, 2007 DOI: https://doi.org/10.1016/j.apcata.2007.01.013

M. Marafi, A. Stanislaus, “Spent catalyst waste management: A review: Part I-Developments in hydroprocessing catalyst waste reduction and use”, Resources, Conservation and Recycling, Vol. 52, No. 6, pp. 859-873, 2008 DOI: https://doi.org/10.1016/j.resconrec.2008.02.004

J. Idris, M. Musa, C. Y. Yin, K. H. Hamid, “Recovery of nickel from spent catalyst from palm oil hydrogenation process using acidic solutions”, Journal of Industrial and Engineering Chemistry, Vol. 25, No. 16, pp. 251-5, 2010 DOI: https://doi.org/10.1016/j.jiec.2010.01.044

W. Mulak, A. Szymczycha, A. Lesniewicz, W. Zyrnicki, “Preliminary results of metals leaching from a spent hydrodesulphurization (HDS) catalyst”, Physicochemical Problems of Mineral Processing, Vol. 40, pp. 69–76, 2006

D. D. Sun, J. H. Tay, C. Easton, “Recovery and encapsulation of heavy metals on refinery spent hydrotreating catalyst”, Water Science and Technology, Vol. 42, pp.71–7, 2000 DOI: https://doi.org/10.2166/wst.2000.0497

M. Marafi, A. Stanislaus., “Spent hydroprocessing catalyst management: A review, Part II-Advances in metal recovery and safe disposal methods”, Resources, Conservation and Recycling, Vol. 53, pp. 1–26, 2008 DOI: https://doi.org/10.1016/j.resconrec.2008.08.005

K. H. Park, D. Mohapatra, C. Nam.,”Two stage leaching of activated spent HDS catalyst and solvent extraction of aluminium using organo-phosphinic extractant, Cyanex 272”, Journal of Hazardous Materials, Vol. 148, pp. 287–295, 2007 DOI: https://doi.org/10.1016/j.jhazmat.2007.02.034

D. Mishra, D. J. Kim, D. E. Ralph, J. G. Ann, Y. H. Rhee, “Bioleaching of spent catalysts using cidophilic bacteria and its kinetic aspect”, Journal of Hazardous Materials, Vol.152, pp. 1082–91, 2008 DOI: https://doi.org/10.1016/j.jhazmat.2007.07.083

V. Bosio, M. Viera, E. Donati, “Integrated bacterial process for the treatment of a spent nickel catalyst”, Journal of Hazardous Materials, Vol. 154, pp. 804-810, 2008 DOI: https://doi.org/10.1016/j.jhazmat.2007.10.095

Downloads

How to Cite

[1]
Abrar, B., Halali, M. and Pourfathi, A. 2016. Recovery of Nickel from Reformer Catalysts of Direct Reduction, Using the Pressurized Dissolving Method in Nitric Acid. Engineering, Technology & Applied Science Research. 6, 5 (Oct. 2016), 1158–1161. DOI:https://doi.org/10.48084/etasr.731.

Metrics

Abstract Views: 801
PDF Downloads: 531

Metrics Information