A Novel Hybrid Algorithm for Software Cost Estimation Based on Cuckoo Optimization and K-Nearest Neighbors Algorithms

Authors

  • E. E. Miandoab Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
  • F. S. Gharehchopogh Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
Volume: 6 | Issue: 3 | Pages: 1018-1022 | June 2016 | https://doi.org/10.48084/etasr.701

Abstract

The inherent uncertainty to factors such as technology and creativity in evolving software development is a major challenge for the management of software projects. To address these challenges the project manager, in addition to examining the project progress, may cope with problems such as increased operating costs, lack of resources, and lack of implementation of key activities to better plan the project. Software Cost Estimation (SCE) models do not fully cover new approaches. And this lack of coverage is causing problems in the consumer and producer ends. In order to avoid these problems, many methods have already been proposed. Model-based methods are the most familiar solving technique. But it should be noted that model-based methods use a single formula and constant values, and these methods are not responsive to the increasing developments in the field of software engineering. Accordingly, researchers have tried to solve the problem of SCE using machine learning algorithms, data mining algorithms, and artificial neural networks. In this paper, a hybrid algorithm that combines COA-Cuckoo optimization and K-Nearest Neighbors (KNN) algorithms is used. The so-called composition algorithm runs on six different data sets and is evaluated based on eight evaluation criteria. The results show an improved accuracy of estimated cost.

Keywords:

Software Cost Estimation, COCOMO model, COA-Cuckoo optimization algorithm, KNN algorithm

Downloads

Download data is not yet available.

References

F. S. Gharehchopogh, “Neural networks application in software cost estimation: a case study”, 2011 IEEE International Symposium on Innovations in Intelligent Systems and Applications, pp. 69-73, Istanbul, Turkey, June 15-18, 2011 DOI: https://doi.org/10.1109/INISTA.2011.5946160

B. Boehm, B. Clark, E. Horowitz, R. Shelby, C. Westland, “An overview of the COCOMO 2.0 software cost model”, Software Technology Conference, 1995

K. Parkash, H. Mittal, “Software cost estimation using fuzzy logic”, ACM SIGSOFT Software Engineering, Vol. 35, No. 1, pp. 1-7, 2010 DOI: https://doi.org/10.1145/1668862.1668866

Z. A. Dizaji, F. S. Gharehchopogh, “A hybrid of ant colony optimization and chaos optimization algorithms approach for software cost estimation”, Indian Journal of Science and Technology, Vol 8, No. 2, pp. 128–133, 2015 DOI: https://doi.org/10.17485/ijst/2015/v8i2/57776

C. S. Reddy, P. S. Rao, K. Raju, V. V. Kumari, “A new approach for estimating software effort using RBFN network”, International Journal of Computer Science and Network Security, Vol. 8, No. 7, pp. 237-241, 2008

A. B. Krishna, T. K. R. Krishna, “Fuzzy and swarm intelligence for software effort estimation”, Advances in Information Technology and Management, Vol. 2, No. 1, pp. 246-250, 2012

I. Maleki, L. Ebrahimi, F. S. Gharehchopogh, “A hybrid approach of firefly and genetic algorithms in software cost estimation”, MAGNT Research Report, Vol. 2, No. 6, pp. 372-388, 2014

S. Sarwar, “Proposing effort estimation of cocomo ii through perceptron learning rule”, Int. J. Comput. Appl., Vol. 7, No. 1, pp. 22–32, 2013 DOI: https://doi.org/10.5120/11929-7707

T. M. Cover, P. E. Hart, “Nearest neighbor pattern classification”, IEEE Trans. Inform. Theory, Vol. IT-13, pp 21-27, 1967 DOI: https://doi.org/10.1109/TIT.1967.1053964

T. Bailey, A. K. Jain, “A note on distance weighted k-nearest neighbor rules”, IEEE Trans. Systems, Man Cybernatics, Vol. 8, pp. 311-313, 1978 DOI: https://doi.org/10.1109/TSMC.1978.4309958

X. S. Yang, S. Deb, "Cuckoo search via levy flights", World Congress on Nature &Biologically Inspired Computing (NaBIC2009). IEEE Publications, pp. 210–214, 2009 DOI: https://doi.org/10.1109/NABIC.2009.5393690

R Rajabioun, “Cuckoo optimization algorithm”, Applied Soft Computing, Vol. 11, pp. 5508–5518 , 2011 DOI: https://doi.org/10.1016/j.asoc.2011.05.008

L. F. Capretz, V. Marza, “Improving effort estimation by voting software estimation models”, Advances in Software Engineering, Article ID 829725, pp. 1-8, 2009 DOI: https://doi.org/10.1155/2009/829725

S. Kumari, S. Pushkar, “Performance analysis of the software cost estimation methods: a review”, International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 3, No. 7, pp. 229-238, 2013

Downloads

How to Cite

[1]
Miandoab, E.E. and Gharehchopogh, F.S. 2016. A Novel Hybrid Algorithm for Software Cost Estimation Based on Cuckoo Optimization and K-Nearest Neighbors Algorithms. Engineering, Technology & Applied Science Research. 6, 3 (Jun. 2016), 1018–1022. DOI:https://doi.org/10.48084/etasr.701.

Metrics

Abstract Views: 1134
PDF Downloads: 628

Metrics Information