Exploitation of Nanoindentation and Statistical Tools to Investigate the Behavior of Materials

L. Aminallah, S. Habibi

Abstract


The determination of the performance of materials requires the characterization of materials at scales: macro, micro and nanoscale. Among the most common experimental methods one can find the instrumented indentation test for determining the contact stiffness and contact depth and analyzing the characteristic curve by nanoindentation load on the penetration of the indentor. Through statistical processing of the experimental results, the rigidity of contact on the contact depth is investigated, depending on the indentation load, for bronze, brass and copper. A mathematical model is adopted to describe the polynomial regression by the method of least squares growth rigidity with one or more geometric parameters representative of the size of the footprint. This study allows us to identify factors that influence the rigidity of the materials examined and the sensitivity of the used indenters.


Keywords


nanoindentation; modeling; power law; contact stiffness; contact depth

Full Text:

PDF

References


S. Habibi, A. Ziadi, A. Megueni, “Modeling a Small Punch Testing Device”, Eng. Technol. Appl. Sci. Res., Vol. 4, No. 2, pp. 612-617, 2014

W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation measurements”, J. Mat. Res., Vol. 7, No. 6, pp. 1564-1583, 1992

A. H. W. Ngan, H. T. Wang, B. Tang, K. Y. Sze, “Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation”, Int. J. Solids. Struct., Vol. 42, No. 5-6, pp. 1831-1846, 2005

D. Chicot, F. Roudet, V. Lepingle, G. Louis, “Strain gradient plasticity tostudy hardness behaviour of magnetite (FE3O4) under multicyclic indentation”, J. Mater. Res., Vol. 4, No. 3, pp. 749-759, 2009

M. R. Van Landingham, “Review of Instrumented Indentation”, J. Res. Nat. Inst. Stand. Techn., Vol. 108, pp. 249-265, 2003.

J. M. Antunes, J. V. Fernandes, L. F. Menezes, B. M. Chaparro, “A new approach for reverse analyses in depth-sensing indentation using numerical simulation”, Acta. Mater., Vol. 55, pp. 69-81, 2007

T. C. Ovaert, B. R. Kim, J. Wang, “Multi-parameter models of the viscoelastic/plastic mechanical properties of coatings via combined nanoindentation and non-linear finite element modeling”, Prog. Org. Coat., No. 47, pp. 312-323, 2003

Y. T. Cheng, C. M. Cheng, “Scaling, dimensional analysis, and indentation measurements”, Mater. Sci. Eng. R., Vol. 44, pp. 91-149, 2004

G. Kermouche, J.L. Loubet, J.M. Bergheau, “Extraction of stress-strain curves of elastic-viscoplastic solids using conical/pyramidal indentation testing with application to polymers”, Mech. Mater., Vol. 40, pp. 271-283, 2008

L. Anand, N. M. Ames, “On modeling the micro-indentation response of an amorphous polymer”, Int. J. Plast., Vol. 22, pp. 1123-1170, 2006

O. Sahin, O. Uzun, U. Kolemen, N. Ucar, “Analysis of ISE in dynamic hardness measurements of β-Sn single crystals using a depth-sensing indentation technique”, Mater. Charact., Vol. 59, pp. 729-736, 2008

G. M. Pharr, A. Bolshakov, “Understanding nanoindentation unloading curves”, J. Mater. Res., Vol. 17, No. 10, pp. 2660-2671, 2002




eISSN: 1792-8036     pISSN: 2241-4487