Air Distributor Designs for Fluidized Bed Combustors: A Review

Authors

  • A. Shukrie Energy and Sustainability Focus Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Malaysia
  • S. Anuar Energy and Sustainability Focus Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Malaysia
  • A. N. Oumer Energy and Sustainability Focus Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Malaysia
Volume: 6 | Issue: 3 | Pages: 1029-1034 | June 2016 | https://doi.org/10.48084/etasr.688

Abstract

Fluidized bed combustion (FBC) has been recognized as one of the suitable technologies for converting a wide variety of biomass fuels into energy. One of the key factors affecting the successful operation of fluidized bed combustion is its distributor plate design. Therefore, the main purpose of this article is to provide a critical overview of the published studies that are relevant to the characteristics of different fluidized bed air distributor designs. The review of available works display that the type of distributor design significantly affects the operation of the fluidized bed i.e., performance characteristics, fluidization quality, air flow dynamics, solid pattern and mixing caused by the direction of air flow through the distributors. Overall it is observed that high pressure drop across the distributor is one of the major draw backs of the current distributor designs. However, fluidization was stable in a fluidized bed operated at a low perforation ratio distributor due to the pressure drop across the distributor, adequate to provide uniform gas distribution. The swirling motion produced by the inclined injection of gas promotes lateral dispersion and significantly improves fluidization quality. Lastly, the research gaps are highlighted for future improvement consideration on the development of efficient distributor designs.

Keywords:

Fluidized bed combustor, air distributor design, swirling distributor, perforated distributor

Downloads

Download data is not yet available.

References

J. Han, H. Kim, W. Minami, T. Shimizu, G. Wang, "The effect of the particle size of alumina sand on the combustion and emission behavior of cedar pellets in a fluidized bed combustor", Bioresour. Technol., Vol. 99, pp. 3782–37866, 2008 DOI: https://doi.org/10.1016/j.biortech.2007.07.010

X. Yang, Y. Zhao, Z. Luo, Z. Chen, S. Song, “Effects of sintered metal distributor on fluidization quality of the air dense medium fluidized bed”, Min. Sci. Technol., Vol. 21, pp. 681–685, 2011 DOI: https://doi.org/10.1016/j.mstc.2011.03.009

K. Vakhshouri, J. R. Grace, “Effects of the plenum chamber volume and distributor geometry on fluidized bed hydrodynamics”, Particuology, Vol. 8, pp. 2–12, 2010 DOI: https://doi.org/10.1016/j.partic.2009.05.005

L. Huilin, Z. Yunhua, J. Ding, Z. Linyan, L. Yaning, S. Ana, “Numerical Modeling of Gas Tubular Distributors in Bubbling Fluidized-Bed Incinerators”, Ind. Eng. Chem. Res., Vol. 45,pp. 6818–6827, 2006 DOI: https://doi.org/10.1021/ie051378e

V. Akbari, T. N. G. Borhani, R. Aramesh, M. K. A. Hamid, A. Shamiri, M. A. Hussain, “Evaluation of hydrodynamic behavior of the perforated gas distributor of industrial gas phase polymerization reactor using CFD-PBM coupled model”, Comput. Chem. Eng., Vol. 82, pp. 344–361, 2015 DOI: https://doi.org/10.1016/j.compchemeng.2015.07.001

K. V. N. S. Rao, G. V. Reddy, “Effect of Distributor Design on Temperature Profiles in Fluidized Bed During the Combustion of Rice Husk”, Combust. Sci. Technol., Vol. 179, pp. 1589–1603, 2007 DOI: https://doi.org/10.1080/00102200701244702

S. Dong, C. Cao, C. Si, Q. Guo, “Effect of Perforated Ratios of Distributor on the Fluidization Characteristics in a Gas−Solid Fluidized Bed”, Ind. Eng. Chem. Res., Vol. 48, pp. 517–527, 2009 DOI: https://doi.org/10.1021/ie801073r

A. V. Kulkarni, J. B. Joshi, “Design and selection of sparger for bubble column reactor. Part I: Performance of different spargers”, Chem. Eng. Res. Des., Vol. 89, pp. 1972–1985, 2011 DOI: https://doi.org/10.1016/j.cherd.2011.01.004

A. V. Kulkarni, J. B. Joshi, “Design and selection of sparger for bubble column reactor. Part II: Optimum sparger type and design”, Chem. Eng. Res. Des., Vol. 89, pp. 1986–1995, 2011 DOI: https://doi.org/10.1016/j.cherd.2011.01.014

B. N. Thorat, A. V. Shevade, K. N. Bhilegaonkar, R. H. Aglawe, U. Parasu Veera, S. S. Thakre, A. B. Pandit, S .B. Sawant, J. B. Joshi “Effect of Sparger Design and Height to Diameter Ratio on Fractional Gas Hold-up in Bubble Columns”, Chem. Eng. Res. Des., Vol. 76, pp. 823–834, 1998 DOI: https://doi.org/10.1205/026387698525577

M. T. Dhotre, K. Ekambara, J. B. Joshi, “CFD simulation of sparger design and height to diameter ratio on gas hold-up profiles in bubble column reactors”, Exp. Therm. Fluid Sci., Vol. 28, pp. 407–421, 2004 DOI: https://doi.org/10.1016/j.expthermflusci.2003.06.001

V. Akbari, T. N. G. Borhani, H. R. Godini, M. K. A. Hamid, “Model-based analysis of the impact of the distributor on the hydrodynamic performance of industrial polydisperse gas phase fluidized bed polymerization reactors”, Powder Technol., Vol. 267, pp. 398–411, 2014 DOI: https://doi.org/10.1016/j.powtec.2014.07.042

Y. Li, H. Fan, X. Fan, “Identify of flow patterns in bubbling fluidization”, Chem. Eng. Sci., Vol. 117, pp. 455–464, 2014 DOI: https://doi.org/10.1016/j.ces.2014.07.012

C. Sobrino, N. Ellis, M. de Vega, “Distributor effects near the bottom region of turbulent fluidized beds”, Powder Technol., Vol. 189, pp. 25–33, 2009 DOI: https://doi.org/10.1016/j.powtec.2008.05.012

J. Sánchez-Prieto, A. Soria-Verdugo, J. V. Briongos, D. Santana, “The effect of temperature on the distributor design in bubbling fluidized beds”, Powder Technol., Vol. 261, pp. 176–184, 2014 DOI: https://doi.org/10.1016/j.powtec.2014.04.035

C. -S. Chyang, Y. -L. Han, C. -H. Chien, “Gas dispersion in a rectangular bubbling fluidized bed”, J. Taiwan Inst. Chem. Eng., Vol. 41, pp. 195–202, 2010 DOI: https://doi.org/10.1016/j.jtice.2009.07.001

S. I. Ngo, Y. -I. Lim, B. -H. Song, U. -D. Lee, J. -W. Lee, J. -H. Song, “Effects of fluidization velocity on solid stack volume in a bubbling fluidized-bed with nozzle-type distributor”, Powder Technol., Vol. 275, pp. 188–198, 2015 DOI: https://doi.org/10.1016/j.powtec.2015.02.017

H. G. Brink, J. Saayman, W. Nicol, “Two dimensional fluidised bed reactor: Performance of a novel multi-vortex distributor”, Chem. Eng. J., Vol. 175, pp. 484–493, 2011 DOI: https://doi.org/10.1016/j.cej.2011.09.077

F. Ouyang, O. Levenspiel, “Spiral Distributor for Fluidized Beds”, Ind. Eng. Chem. Process Des. Dev., Vol. 25, pp. 504–507, 1986 DOI: https://doi.org/10.1021/i200033a026

B. Sreenivasan, V. R. Raghavan, “Hydrodynamics of a swirling fluidised bed”, Chem. Eng. Process. Process Intensif. Vol.41, pp. 99–106, 2002 DOI: https://doi.org/10.1016/S0255-2701(00)00155-0

M. F. Mohideen, B. Sreenivasan, S. A. Sulaiman, V. R. Raghavan, “Heat transfer in a swirling fluidized bed with geldart type-D particles”, Korean J. Chem. Eng., Vol. 29, pp. 862–867, 2012 DOI: https://doi.org/10.1007/s11814-011-0255-6

A. Shukrie, Studies on the residence time distribution of solids in a swirling fluidized bed, Masters thesis, Universiti Teknologi Petronas, 2012

C. S. Miin, S. A. Sulaiman, V. R. Raghavan, M. R. Heikal, M. Y. Naz, “Hydrodynamics of multi-sized particles in stable regime of a swirling bed”, Korean J. Chem. Eng., Vol. 32, pp. 2361–2367, 2015 DOI: https://doi.org/10.1007/s11814-015-0151-6

M. Faizal, S. M. Seri, M. Al-Hafiz, V. R. Raghavan, “CFD studies on velocity distribution of air in a swirling fluidized bed”, Adv. Mater. Res., Vol. 468-471, pp. 25–29, 2012 DOI: https://doi.org/10.4028/www.scientific.net/AMR.468-471.25

R. Kaewklum, V. I. Kuprianov, P. L. Douglas, “Hydrodynamics of air–sand flow in a conical swirling fluidized bed: A comparative study between tangential and axial air entries”, Energy Convers. Manag., Vol. 50, pp. 2999–3006, 2009 DOI: https://doi.org/10.1016/j.enconman.2009.07.019

V. I. Kuprianov, R. Kaewklum, K. Sirisomboon, P. Arromdee, S. Chakritthakul, “Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk”, Appl. Energy, Vol. 87, pp. 2899–2906, 2010 DOI: https://doi.org/10.1016/j.apenergy.2009.09.009

P. Arromdee, V. I. Kuprianov, “A comparative study on combustion of sunflower shells in bubbling and swirling fluidized-bed combustors with a cone-shaped bed”, Chem. Eng. Process. Process Intensif., Vol. 62, pp. 26–38, 2012 DOI: https://doi.org/10.1016/j.cep.2012.10.002

A. S. M. Yudin, V. R. Raghavan, M. Narahari, “A mathematical model for residence time distribution analysis in swirling fluidized bed”, Natl. Postgrad. Conf. (NPC), pp. 1–5, 2011 DOI: https://doi.org/10.1109/NatPC.2011.6136392

R. Kaewklum, V. I. Kuprianov, “Experimental studies on a novel swirling fluidized-bed combustor using an annular spiral air distributor”, Fuel, Vol. 89, pp. 43–52, 2010 DOI: https://doi.org/10.1016/j.fuel.2009.07.027

V. I. Kuprianov, R. Kaewklum, S. Chakritthakul, “Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel”, Energy, Vol. 36, pp. 2038–2048, 2011 DOI: https://doi.org/10.1016/j.energy.2010.05.026

S. M. Aworinde, D. J. Holland, J. F. Davidson, “Investigation of a swirling flow nozzle for a fluidised bed gas distributor”, Chem. Eng. Sci., Vol. 132, pp. 22–31, 2015 DOI: https://doi.org/10.1016/j.ces.2015.04.001

Downloads

Additional Files

How to Cite

[1]
A. Shukrie, S. Anuar, and A. N. Oumer, “Air Distributor Designs for Fluidized Bed Combustors: A Review”, Eng. Technol. Appl. Sci. Res., vol. 6, no. 3, pp. 1029–1034, Jun. 2016.

Metrics

Abstract Views: 1885
PDF Downloads: 2676 Cover letter Downloads: 0

Metrics Information