Optimal FLC-Sugeno Controller based on PSO for an Active Damping System
Received: 27 November 2023 | Revised: 17 December 2023 | Accepted: 19 December 2023 | Online: 8 February 2024
Corresponding author: Tien-Duy Nguyen
Abstract
In this paper, a method for the design of an optimal Sugeno model (FLC-Sugeno) fuzzy logic controller for the active suspension system of quarter-vehicle models is presented. The parameters of the FLC-Sugeno controller are optimally searched, using the Particle Swarm Optimization (PSO) algorithm. The 16 optimized parameters include 3 parameters for adjusting the domain of the input state variables and control variables at the controller’s output, 4 fuzzy set adjustment numbers of the linguistic variables, and 9 parameters as the fuzzy rule weights of the rule system control. To compare and evaluate the effectiveness of the optimal FLC-Sugeno controller, an optimal PID controller using PSO is also implemented. Simulation results of the active damping system with the controllers when affected by the same type and standard road surface excitation show that the FLC-Sugeno controller is optimal for the quick ending of the oscillations of vehicle body displacement. The result shows that the proposed controlling scheme can be extended and applied to more complex active damping system models.
Keywords:
FLC-Sugeno, particle swarm optimization, active suspension system, quarter-vehicle modelsDownloads
References
R. Pekgökgöz, M. Gurel, M. Bilgehan, and M. Kisa, "Active suspension of cars using fuzzy logic controller optimized by genetic algorithm," International Journal of Engineering and Applied Sciences, vol. 2, no. 4, pp. 27–37, Jan. 2010.
E. Allam, H. F. Elbab, M. A. Hady, and S. Abouel-Seoud, "Vibration Control of Active Vehicle Suspension System Using Fuzzy Logic Algorithm," Fuzzy Information and Engineering, vol. 2, no. 4, pp. 361–387, Dec. 2010.
N. Changizi and M. Rouhani, "Comparing Pid And Fuzzy Logic Control A Quarter-car Suspension System," Journal of Mathematics and Computer Science, vol. 2, no. 3, pp. 559–564, Apr. 2011.
Z. Chen, "Research on fuzzy control of the vehicle’s semi-active suspension," in Research on fuzzy control of the vehicle’s semi-active suspension, Jun. 2015, pp. 631–636.
S. Palanisamy and S. Karuppan, "Fuzzy control of active suspension system," Journal of Vibroengineering, vol. 18, no. 5, pp. 3197–3204, Aug. 2016.
Instrumentation and Control Engg., Dr. B.R. AmbedkarNational Institute of Tech., Jalandhar, India, N. S. Bhangal, and K. A. Raj, "Fuzzy Control of Vehicle Active Suspension System," in International Journal of Mechanical Engineering and Robotics Research., 2016.
A. A. Basari, N. a. A. Nawir, K. A. Mohamad, X. Y. Ng, and A. M. Khafe, "Fuzzy Logic Controller for Half Car Active Suspension System," Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 10, no. 2, pp. 125–129, May 2018.
S.-Y. Han, J.-F. Dong, J. Zhou, and Y.-H. Chen, "Adaptive Fuzzy PID Control Strategy for Vehicle Active Suspension Based on Road Evaluation," Electronics, vol. 11, no. 6, Jan. 2022, Art. no. 921.
H. Medjoubi, A. Yassine, and H. Abdelouahab, "Design and Study of an Adaptive Fuzzy Logic-Based Controller for Wheeled Mobile Robots Implemented in the Leader-Follower Formation Approach," Engineering, Technology & Applied Science Research, vol. 11, no. 2, pp. 6935–6942, Apr. 2021.
N. Zerroug, K. Behih, Z. Bouchama, and K. Zehar, "Robust Adaptive Fuzzy Control of Nonlinear Systems," Engineering, Technology & Applied Science Research, vol. 12, no. 2, pp. 8328–8334, Apr. 2022.
J. Joshua Robert, P. Senthil Kumar, S. Tushar Nair, D. H. Sharne Moni, and B. Swarneswar, "Fuzzy control of active suspension system based on quarter car model," Materials Today: Proceedings, vol. 66, pp. 902–908, Jan. 2022.
N. E. H. Yazid, K. Hartani, A. Merah, and T. M. Chikouche, "New Fuzzy Logic Control for Quarter Vehicle Suspension System," in Artificial Intelligence and Heuristics for Smart Energy Efficiency in Smart Cities, 2022, pp. 643–652.
T. A. Arslan, F. E. Aysal, İ. Çeli̇k, H. Bayrakçeken, and T. N. Öztürk, "Quarter Car Active Suspension System Control Using Fuzzy Controller," Engineering Perspective, vol. 2, no. 4, pp. 33–39, Dec. 2022.
Z. Zhang and J. Dong, "A New Optimization Control Policy for Fuzzy Vehicle Suspension Systems Under Membership Functions Online Learning," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 5, pp. 3255–3266, Feb. 2023.
I. H. Hamad, A. Chouchaine, and H. Bouzaouache, "A Takagi-Sugeno Fuzzy Model for Greenhouse Climate," Engineering, Technology & Applied Science Research, vol. 11, no. 4, pp. 7424–7429, Aug. 2021.
N. V. Hai, N. V. Tiem, L. H. Lan, and T. H. Vo, "Pantograph Catenary Contact Force Regulation Based on Modified Takagi-Sugeno Fuzzy Models," Engineering, Technology & Applied Science Research, vol. 13, no. 1, pp. 9879–9887, Feb. 2023.
T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15, no. 1, pp. 116–132, Jan. 1985.
J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN’95 - International Conference on Neural Networks, Perth, WA, Australia, Aug. 1995, vol. 4, pp. 1942–1948.
G. P. A. Koch, "Adaptive Control of Mechatronic Vehicle Suspension Systems," Ph.D. dissertation, Technical University of Munich, Munich, Germany, 2011.
B. C. Murphy, "Design and construction of a precision tubular linear motor and controller," M.S. thesis, Texas A&M University, 2003.
Downloads
How to Cite
License
Copyright (c) 2023 Hoang Viet Nguyen, Feiqi Deng, Tien-Duy Nguyen
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.