Torque Ripple Minimization and Performance Investigation of an In-Wheel Permanent Magnet Motor
Abstract
Recently, electric vehicle motoring has become a topic of interest, due to the several problems caused by thermal engines such as pollution and high oil prices. Thus, electric motors are increasingly applied in vehicle’ applications and relevant research about these motors and their applications has been performed. Of particular interest are the improvements regarding torque production capability, the minimization of torque ripple and iron losses. The present work deals with the optimum design and the performance investigation of an outer rotor permanent magnet motor for in-wheel electric vehicle application. At first, and in order to find the optimum motor design, a new based particle-swarm multi-objective optimization procedure is applied. Three objective functions are used: efficiency maximization, weight and ripple torque minimization. Secondly, the effects of the permanent magnets segmentation, the stator slots opening, and the separation of adjacent magnets by air are outlined. The aim of the paper is the design of a topology with smooth output torque, low ripple torque, low iron losses and mechanical robustness.
Keywords:
permanent magnet motor, optimization, performance, magnets design, ripple torqueDownloads
References
Z. Q. Zhu, D. Howe, “Electrical machines and drives for electric, hybrid and fuel cell vehicles”, Proc. fn the IEEE, Vol. 95, No. 4, pp. 746–765, 2007 DOI: https://doi.org/10.1109/JPROC.2006.892482
J. Wang, K. Atallah, Z. Q. Zhu, D. Howe, “Modular 3-phase permanent magnet brushless machines for in-wheel applications”, IEEE T. Veh. Technol., Vol. 57, No. 5, pp. 2714-2720, 2008 DOI: https://doi.org/10.1109/TVT.2007.914476
Y. Chen, P. Pillay, A. Khan, “PM wind generator topologies”, IEEE T. Ind. Appl., Vol. 41, No. 6, pp. 619-1626, 2005 DOI: https://doi.org/10.1109/TIA.2005.858261
X. Sun, C. Ming, W. Hua, L. Xu, “Optimal design of double layer permanent magnet dual mechanical port machine for wind power application”, IEEE T. Magn., Vol. 45, No. 10, pp. 4613–4616, 2009 DOI: https://doi.org/10.1109/TMAG.2009.2021526
F. Libert, Design, Optimization and Comparison of Permanent Magnet Motors for a Low-Speed Direct-Driven Mixer, Ph.D. Thesis, Royal Institute of Technology, Sweden, 2004
L. Brooke, Protean electric tackles the unsprung-mass ’myth’ of in-wheel motors, 2011 SAE World Congress, USA, 2011
H. Weh, “Ten years of research in the field of high force densitys-transverse flux machines”, In Proc. speedam’96, Capri, 1996
A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. Coello Coello, F. Luna, E. Alba, “SMPSO: A New PSO-based Metaheuristic for Multi-objective Optimization”, IEEE 2009 Symposium on Computational Intelligence in Multi-criteria Decision-Making, Nashville, TN, USA, 30 March-02 April 2009 DOI: https://doi.org/10.1109/MCDM.2009.4938830
R. Ilka, A. R. Tilaki, H. A. Alamdari, R. Baghipour, “Design Optimization of Permanent Magnet-Brushless DC Motor using Elitist Genetic Algorithm with Minimum loss and Maximum Power Density”, Int. J. Mecha. Elecr. Comput. Technol., Vol. 4, No. 10, pp. 1169-1185 2014
Y. Ahn, J. Park, C. G. Lee, J. W. Kim, S. Y. Jung, “Novel Memetic Algorithm implemented With GA (Genetic Algorithm) and MADS (Mesh Adaptive Direct Search) for Optimal Design of Electromagnetic System”, IEEE T. Magn., Vol. 46, No. 6, pp. 1982–1985, 2010 DOI: https://doi.org/10.1109/TMAG.2010.2043228
V. P. Sakthivel, R. Bhuvaneswari, S. Subramanian, “Multi-objective parameter estimation of induction motor using particle swarm optimization”, Eng. Appl. Artif. Intel., Vol. 23, No. 3, pp. 302–312, 2010 DOI: https://doi.org/10.1016/j.engappai.2009.06.004
M. Ashabani, Y. A. R. I. Mohamed, “Multi-objective Shape Optimization of Segmented Pole Permanent-Magnet Synchronous Machines with Improved Torque Characteristics”, IEEE T. Magn., Vol. 47, No. 4, pp. 795-804, 2011 DOI: https://doi.org/10.1109/TMAG.2010.2104327
A. Mansouri, N. Smairi, H. Trabelsi, “Multi-objective Optimization of an In-Wheel Electric Vehicle Motor”, Int. J. App. Elect. Mech., Vol. 50, No. 3, pp. 449-465, 2016 DOI: https://doi.org/10.3233/JAE-150125
A. Mansouri, N. Smairi, H. Trabelsi, “A new multi-objective optimization procedure based on particle swarm algorithm for optimum design of in-wheel permanent magnet motor”, Tur. J. Elec. Eng. Comp. Sci. (submitted)
S. Huang, M. Aydin, T. Lipo, “Comparison of (non-slotted and slotted) surface mounted PM motors and axial flux motors for submarine ship drives,” in Proc. of 3rd Naval Symposium on Electrical Machines, USA, Dec. 4-7, 2000
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.