Fault Detection Methods Suitable for Automotive Applications in Proton Exchange Fuel Cells

Authors

  • S. Barhate Department of Technology, Savitribai Phule Pune University, India
  • R. Mudhalwadkar Instrumentation and Control Department, College of Engineering Pune, India
  • S. Madhe Instrumentation and Control Department, Cummins College of Engineering for Women, India
Volume: 12 | Issue: 6 | Pages: 9607-9613 | December 2022 | https://doi.org/10.48084/etasr.5262

Abstract

The fault conditions degrade the performance of proton exchange fuel cells and reduce their useful life. The prolonged existence of a fault condition can permanently damage the fuel cell. This paper proposes four methods for fault detection and fault type isolation. These methods were based on the coefficient of variance, ratios of change in output power to change in voltage and change in output voltage to the change in current, fuzzy membership values and Euclidian distance, and wavelet transform. These methods are non-invasive to the fuel cell and involve non-destructive testing. These methods were experimentally validated.

Keywords:

PEM Fuel cell, coefficient of variance, fuzzy membership values, wavelet, fuel cell faults

Downloads

Download data is not yet available.

References

M. A. Biberci and M. B. Celik, "Dynamic Modeling and Simulation of a PEM Fuel Cell (PEMFC) during an Automotive Vehicle’s Driving Cycle," Engineering, Technology & Applied Science Research, vol. 10, no. 3, pp. 5796–5802, Jun. 2020. DOI: https://doi.org/10.48084/etasr.3352

S. S. Barhate, R. Mudhalwadkar, and A. K. Prakash, "A survey on factors affecting performance and durability of PEM Fuel Cells in Automotive applications," International Journal of Control Theory and Applications, vol. 10, no. 9, pp. 659–669, 2017.

T. Ma, W. Lin, Y. Yang, K. Wang, and W. Jia, "Water content diagnosis for proton exchange membrane fuel cell based on wavelet transformation," International Journal of Hydrogen Energy, vol. 45, no. 39, pp. 20339–20350, Aug. 2020. DOI: https://doi.org/10.1016/j.ijhydene.2019.11.068

X. Zhang, D. Yang, M. Luo, and Z. Dong, "Load profile based empirical model for the lifetime prediction of an automotive PEM fuel cell," International Journal of Hydrogen Energy, vol. 42, no. 16, pp. 11868–11878, Apr. 2017. DOI: https://doi.org/10.1016/j.ijhydene.2017.02.146

Z. Wang, "Lifetime Prediction Modeling of Automotive Proton Exchange Membrane Fuel Cells," presented at the WCX SAE World Congress Experience, Apr. 2019. DOI: https://doi.org/10.4271/2019-01-0385

M. Becherif, M.-C. Péra, D. Hissel, and Z. Zheng, "Determination of the health state of fuel cell vehicle for a clean transportation," Journal of Cleaner Production, vol. 171, pp. 1510–1519, Jan. 2018. DOI: https://doi.org/10.1016/j.jclepro.2017.10.072

P. Polverino, E. Frisk, D. Jung, M. Krysander, and C. Pianese, "Model-based diagnosis through Structural Analysis and Causal Computation for automotive Polymer Electrolyte Membrane Fuel Cell systems," Journal of Power Sources, vol. 357, pp. 26–40, Jul. 2017. DOI: https://doi.org/10.1016/j.jpowsour.2017.04.089

S. Barhate and R. Mudhalwadkar, "Proton exchange membrane fuel cell fault and degradation detection using a coefficient of variance method," Journal of Energy Systems, vol. 5, no. 1, pp. 20–34, Mar. 2021.

S. S. Barhate and R. Mudhalwadkar, "Proton exchange membrane fuel cell dynamic model based on time series analysis for fault diagnosis," International Journal of Renewable Energy Technology, vol. 12, no. 4, pp. 351–379, Jan. 2021. DOI: https://doi.org/10.1504/IJRET.2021.118509

R. H. Lin, X. N. Xi, P. N. Wang, B. D. Wu, and S. M. Tian, "Review on hydrogen fuel cell condition monitoring and prediction methods," International Journal of Hydrogen Energy, vol. 44, no. 11, pp. 5488–5498, Feb. 2019. DOI: https://doi.org/10.1016/j.ijhydene.2018.09.085

A. Benmouna, M. Becherif, D. Depernet, F. Gustin, H. S. Ramadan, and S. Fukuhara, "Fault diagnosis methods for Proton Exchange Membrane Fuel Cell system," International Journal of Hydrogen Energy, vol. 42, no. 2, pp. 1534–1543, Jan. 2017. DOI: https://doi.org/10.1016/j.ijhydene.2016.07.181

L. Mao, L. Jackson, and S. Dunnett, "Fault Diagnosis of Practical Polymer Electrolyte Membrane (PEM) Fuel Cell System with Data-driven Approaches," Fuel Cells, vol. 17, no. 2, pp. 247–258, 2017. DOI: https://doi.org/10.1002/fuce.201600139

H. Liu, J. Chen, M. Hou, Z. Shao, and H. Su, "Data-based short-term prognostics for proton exchange membrane fuel cells," International Journal of Hydrogen Energy, vol. 42, no. 32, pp. 20791–20808, Aug. 2017. DOI: https://doi.org/10.1016/j.ijhydene.2017.06.180

D. Hissel and M. C. Pera, "Diagnostic & health management of fuel cell systems: Issues and solutions," Annual Reviews in Control, vol. 42, pp. 201–211, Jan. 2016. DOI: https://doi.org/10.1016/j.arcontrol.2016.09.005

D. Ritzberger, M. Striednig, C. Simon, C. Hametner, and S. Jakubek, "Online estimation of the electrochemical impedance of polymer electrolyte membrane fuel cells using broad-band current excitation," Journal of Power Sources, vol. 405, pp. 150–161, Nov. 2018. DOI: https://doi.org/10.1016/j.jpowsour.2018.08.082

C. Cadet, S. Jemeï, F. Druart, and D. Hissel, "Diagnostic tools for PEMFCs: from conception to implementation," International Journal of Hydrogen Energy, vol. 39, no. 20, pp. 10613–10626, Jul. 2014. DOI: https://doi.org/10.1016/j.ijhydene.2014.04.163

A. M. Dhirde, N. V. Dale, H. Salehfar, M. D. Mann, and T.-H. Han, "Equivalent Electric Circuit Modeling and Performance Analysis of a PEM Fuel Cell Stack Using Impedance Spectroscopy," IEEE Transactions on Energy Conversion, vol. 25, no. 3, pp. 778–786, Sep. 2010. DOI: https://doi.org/10.1109/TEC.2010.2049267

C. Jeppesen, S. S. Araya, S. L. Sahlin, S. Thomas, S. J. Andreasen, and S. K. Kær, "Fault detection and isolation of high temperature proton exchange membrane fuel cell stack under the influence of degradation," Journal of Power Sources, vol. 359, pp. 37–47, Aug. 2017. DOI: https://doi.org/10.1016/j.jpowsour.2017.05.021

I. Pivac, D. Bezmalinović, and F. Barbir, "Catalyst degradation diagnostics of proton exchange membrane fuel cells using electrochemical impedance spectroscopy," International Journal of Hydrogen Energy, vol. 43, no. 29, pp. 13512–13520, Jul. 2018. DOI: https://doi.org/10.1016/j.ijhydene.2018.05.095

H. Wang, A. Gaillard, and D. Hissel, "Online electrochemical impedance spectroscopy detection integrated with step-up converter for fuel cell electric vehicle," International Journal of Hydrogen Energy, vol. 44, no. 2, pp. 1110–1121, Jan. 2019. DOI: https://doi.org/10.1016/j.ijhydene.2018.10.242

A. Sethi and D. Verstraete, "A Comparative Study of Wavelet-based Descriptors for Fault Diagnosis of Self-Humidified Proton Exchange Membrane Fuel Cells," Fuel Cells, vol. 20, no. 2, pp. 131–142, 2020. DOI: https://doi.org/10.1002/fuce.201900125

R. Du, X. Wang, H. Dai, X. Wei, and P. Ming, "Online impedance spectrum measurement of fuel cells based on Morlet wavelet transform," International Journal of Hydrogen Energy, vol. 46, no. 47, pp. 24339–24352, Jul. 2021. DOI: https://doi.org/10.1016/j.ijhydene.2021.05.012

R. H. Lin, Z. X. Pei, Z. Z. Ye, C. C. Guo, and B. D. Wu, "Hydrogen fuel cell diagnostics using random forest and enhanced feature selection," International Journal of Hydrogen Energy, vol. 45, no. 17, pp. 10523–10535, Mar. 2020. DOI: https://doi.org/10.1016/j.ijhydene.2019.10.127

I. Pivac, B. Šimić, and F. Barbir, "Experimental diagnostics and modeling of inductive phenomena at low frequencies in impedance spectra of proton exchange membrane fuel cells," Journal of Power Sources, vol. 365, pp. 240–248, Oct. 2017. DOI: https://doi.org/10.1016/j.jpowsour.2017.08.087

L. M. Pant, Z. Yang, M. L. Perry, and A. Z. Weber, "Development of a Simple and Rapid Diagnostic Method for Polymer-Electrolyte Fuel Cells," Journal of The Electrochemical Society, vol. 165, no. 6, Jan. 2018, Art. no. F3007. DOI: https://doi.org/10.1149/2.0011806jes

G. Buonocunto, G. Spagnuolo, and W. Zamboni, "A Kalman filter based approach to PEM fuel cell fault detection," in 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, Jun. 2017, pp. 934–939. DOI: https://doi.org/10.1109/ISIE.2017.8001371

L. Ifrek, S. Rosini, G. Cauffet, O. Chadebec, L. Rouveyre, and Y. Bultel, "Fault detection for polymer electrolyte membrane fuel cell stack by external magnetic field," Electrochimica Acta, vol. 313, pp. 141–150, Aug. 2019. DOI: https://doi.org/10.1016/j.electacta.2019.04.193

D. Rotondo, R. M. Fernandez-Canti, S. Tornil-Sin, J. Blesa, and V. Puig, "Robust fault diagnosis of proton exchange membrane fuel cells using a Takagi-Sugeno interval observer approach," International Journal of Hydrogen Energy, vol. 41, no. 4, pp. 2875–2886, Jan. 2016. DOI: https://doi.org/10.1016/j.ijhydene.2015.12.071

A. Abbaspour, K. K. Yen, P. Forouzannezhad, and A. Sargolzaei, "Active Adaptive Fault-Tolerant Control Design for PEM Fuel Cells," in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, Sep. 2018, pp. 3616–3622. DOI: https://doi.org/10.1109/ECCE.2018.8557620

"International Journal of Energy and Environment (IJEE)," International Journal of Energy and Environment, vol. 9, no. 4, pp. 353–362, 2018.

J. Liu, W. Luo, X. Yang, and L. Wu, "Robust Model-Based Fault Diagnosis for PEM Fuel Cell Air-Feed System," IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 3261–3270, Feb. 2016. DOI: https://doi.org/10.1109/TIE.2016.2535118

K. Chen, S. Laghrouche, and A. Djerdir, "Prognosis of fuel cell degradation under different applications using wavelet analysis and nonlinear autoregressive exogenous neural network," Renewable Energy, vol. 179, pp. 802–814, Dec. 2021. DOI: https://doi.org/10.1016/j.renene.2021.07.097

K. Chen, S. Laghrouche, and A. Djerdir, "Health state prognostic of fuel cell based on wavelet neural network and cuckoo search algorithm," ISA Transactions, vol. 113, pp. 175–184, Jul. 2021. DOI: https://doi.org/10.1016/j.isatra.2020.03.012

A. Khadhraoui, T. Selmi, and A. Cherif, "Energy Management of a Hybrid Electric Vehicle," Engineering, Technology & Applied Science Research, vol. 12, no. 4, pp. 8916–8921, Aug. 2022. DOI: https://doi.org/10.48084/etasr.5058

T. Teng, X. Zhang, H. Dong, and Q. Xue, "A comprehensive review of energy management optimization strategies for fuel cell passenger vehicle," International Journal of Hydrogen Energy, vol. 45, no. 39, pp. 20293–20303, Aug. 2020. DOI: https://doi.org/10.1016/j.ijhydene.2019.12.202

L. Russo, M. Sorrentino, P. Polverino, and C. Pianese, "Application of Buckingham π theorem for scaling-up oriented fast modelling of Proton Exchange Membrane Fuel Cell impedance," Journal of Power Sources, vol. 353, pp. 277–286, Jun. 2017. DOI: https://doi.org/10.1016/j.jpowsour.2017.03.116

A. Rosich, R. Sarrate, and F. Nejjari, "On-line model-based fault detection and isolation for PEM fuel cell stack systems," Applied Mathematical Modelling, vol. 38, no. 11, pp. 2744–2757, Jun. 2014. DOI: https://doi.org/10.1016/j.apm.2013.10.065

L. Mao, L. Jackson, and T. Jackson, "Investigation of polymer electrolyte membrane fuel cell internal behaviour during long term operation and its use in prognostics," Journal of Power Sources, vol. 362, pp. 39–49, Sep. 2017. DOI: https://doi.org/10.1016/j.jpowsour.2017.07.018

B. Davies, L. Jackson, and S. Dunnett, "Expert diagnosis of polymer electrolyte fuel cells," International Journal of Hydrogen Energy, vol. 42, no. 16, pp. 11724–11734, Apr. 2017. DOI: https://doi.org/10.1016/j.ijhydene.2017.02.121

M. Jouin, R. Gouriveau, D. Hissel, M.-C. Péra, and N. Zerhouni, "Prognostics and Health Management of PEMFC – State of the art and remaining challenges," International Journal of Hydrogen Energy, vol. 38, no. 35, pp. 15307–15317, Nov. 2013. DOI: https://doi.org/10.1016/j.ijhydene.2013.09.051

M. Jouin, R. Gouriveau, D. Hissel, M.-C. Péra, and N. Zerhouni, "Prognostics of PEM fuel cell in a particle filtering framework," International Journal of Hydrogen Energy, vol. 39, no. 1, pp. 481–494, Jan. 2014. DOI: https://doi.org/10.1016/j.ijhydene.2013.10.054

M. Bressel, M. Hilairet, D. Hissel, and B. Ould Bouamama, "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, vol. 164, pp. 220–227, Feb. 2016. DOI: https://doi.org/10.1016/j.apenergy.2015.11.071

L. Vichard, F. Harel, A. Ravey, P. Venet, and D. Hissel, "Degradation prediction of PEM fuel cell based on artificial intelligence," International Journal of Hydrogen Energy, vol. 45, no. 29, pp. 14953–14963, May 2020. DOI: https://doi.org/10.1016/j.ijhydene.2020.03.209

S. Morando, S. Jemei, R. Gouriveau, N. Zerhouni, and D. Hissel, "Fuel Cells prognostics using echo state network," in IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, Aug. 2013, pp. 1632–1637. DOI: https://doi.org/10.1109/IECON.2013.6699377

D. Zhou, A. Al-Durra, K. Zhang, A. Ravey, and F. Gao, "Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology," Journal of Power Sources, vol. 399, pp. 314–328, Sep. 2018. DOI: https://doi.org/10.1016/j.jpowsour.2018.06.098

T. Y. Kim, B. S. Kim, T. C. Park, and Y. K. Yeo, "Development of Predictive Model based Control Scheme for a Molten Carbonate Fuel Cell (MCFC) Process," International Journal of Control, Automation and Systems, vol. 16, no. 2, pp. 791–803, Apr. 2018. DOI: https://doi.org/10.1007/s12555-016-0234-0

A. H. Detti, N. Y. Steiner, L. Bouillaut, A. B. Same, and S. Jemei, "Fuel Cell Performance Prediction Using an AutoRegressive Moving-Average ARMA Model," in 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, Jul. 2019. DOI: https://doi.org/10.1109/VPPC46532.2019.8952535

S. Barhate and R. Mudhalwadkar, "Proton exchange membrane fuel cell fault and degradation detection using a coefficient of variance method," Journal of Energy Systems, vol. 5, no. 1, pp. 20–34, Mar. 2021. DOI: https://doi.org/10.30521/jes.817879

Y. Hou, Y. Ouyang, F. Pei, and D. Hao, "Voltage and Voltage Consistency Attenuation Law of the Fuel Cell Stack Based on the Durability Cycle Condition," presented at the WCX SAE World Congress Experience, Apr. 2019. DOI: https://doi.org/10.4271/2019-01-0386

D. Zhong et al., "Low temperature durability and consistency analysis of proton exchange membrane fuel cell stack based on comprehensive characterizations," Applied Energy, vol. 264, Apr. 2020, Art. no. 114626. DOI: https://doi.org/10.1016/j.apenergy.2020.114626

M. Noorkami et al., "Effect of temperature uncertainty on polymer electrolyte fuel cell performance," International Journal of Hydrogen Energy, vol. 39, no. 3, pp. 1439–1448, Jan. 2014. DOI: https://doi.org/10.1016/j.ijhydene.2013.10.156

L. F. Liu, B. Liu, and C. W. Wu, "Reliability prediction of large fuel cell stack based on structure stress analysis," Journal of Power Sources, vol. 363, pp. 95–102, Sep. 2017. DOI: https://doi.org/10.1016/j.jpowsour.2017.06.041

M. S. Mohammed and K. Ki-Seong, "Chirplet Transform in Ultrasonic Non-Destructive Testing and Structural Health Monitoring: A Review," Engineering, Technology & Applied Science Research, vol. 9, no. 1, pp. 3778–3781, Feb. 2019. DOI: https://doi.org/10.48084/etasr.2470

P. P. Vaidyanathan, Multirate Systems and Filter Banks. Upper Saddle River, NJ, USA: Prentice Hall, 1993.

S. P. Madhe, B. D. Patil, and R. S. Holambe, "On the Design of Arbitrary Shape Two-Channel Filter Bank Using Eigenfilter Approach," Circuits, Systems, and Signal Processing, vol. 36, no. 11, pp. 4441–4452, Nov. 2017. DOI: https://doi.org/10.1007/s00034-017-0519-4

Downloads

How to Cite

[1]
Barhate, S., Mudhalwadkar, R. and Madhe, S. 2022. Fault Detection Methods Suitable for Automotive Applications in Proton Exchange Fuel Cells. Engineering, Technology & Applied Science Research. 12, 6 (Dec. 2022), 9607–9613. DOI:https://doi.org/10.48084/etasr.5262.

Metrics

Abstract Views: 558
PDF Downloads: 526

Metrics Information