Deflection Reliability Analysis for Composite Steel Bridges
Received: 18 June 2022 | Revised: 6 July 2022 | Accepted: 17 July 2022 | Online: 2 October 2022
Corresponding author: D. Mohammed
Abstract
Reliability methods offer a very efficient serviceability assessment of structures with randomness due to geometry, material, and loading. Al-Awsej composite bridge in Diyala-Iraq with a span of 33.2m has been studied and its deflection reliability index for three lifespans was estimated and compared with the reliability target index. The reliability indices of the bridge have been evaluated through the First-Order Reliability Method (FORM) and Monte Carlo Simulation (MCS) method. MCS has adopted Matlab functions to generate pseudo-random numbers for the considered parameters, but it requires large sample sizes to estimate the small probabilities of failure. That leads to the use of the reduction variance methods such as the Importance Sampling (IS) method. Four cases of random loading were included: dead load and three cases of live loads, i.e. uniformly distributed load with knife-edge load, military load, and sidewalk load. Some assumptions are needed to assess the system behavior, where the bridge is represented as a parallel system with uncorrelated and perfect correlated girders. The reliability index of the composite bridge in the two cases was investigated for lifespans of 1, 10, and 50 years. For the uncorrelated case, the system shows the reliability index in the range of 5 and 4. In contrast, the correlated case offers a range between 4 and 2. With these assumptions, the results show that no failure occurs, hence the reliability index of the system is still within range of the target.
Keywords:
statistical characteristics, FORM, MCs, importance sampling, parallel system, reliability, steel girder bridgeDownloads
References
D. V. Ngo, K. V. Pham, D. D. Le, K. H. Le, and K. V. Huynh, "Assessing Power System Stability Following Load Changes and Considering Uncertainty," Engineering, Technology & Applied Science Research, vol. 8, no. 2, pp. 2758–2763, Apr. 2018. DOI: https://doi.org/10.48084/etasr.1892
A. Nowak, "System reliability models for bridge structures," Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 52, no. 4, pp. 321–328, Dec. 2004.
M. G. Kalyanshetti and R. P. Shriram, "Study of Effectiveness of Courbon’s Theory in the Analysis of T-beam Bridges," vol. 4, no. 3, pp. 1-4, Mar. 2013.
Iraq Standard Specifications for Road Bridges Loading. Baghdad, Iraq: Ministry of Housing and Construction, 1978.
E. Bastidas-Arteaga and A.-H. Soubra, "Reliability Analysis Methods," in Stochastic Analysis and Inverse Modelling, M. A. Hicks and C. Jommi, Eds. Grenoble, France: ALERT Doctoral School, 2014, pp. 53–77.
I. Lukačević, B. Androić, and D. Dujmović, "Assessment of reliable fatigue life of orthotropic steel deck," Open Engineering, vol. 1, no. 3, pp. 306–315, Sep. 2011. DOI: https://doi.org/10.2478/s13531-011-0028-3
A. H.-S. Ang and W. H. Tang, Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering, 2nd ed. New York, NY, USA: Wiley, 2006.
S. S. Kar and L. B. Roy, "Probabilistic Based Reliability Slope Stability Analysis Using FOSM, FORM, and MCS," Engineering, Technology & Applied Science Research, vol. 12, no. 2, pp. 8236–8240, Apr. 2022. DOI: https://doi.org/10.48084/etasr.4689
N. L. Tran and T. H. Nguyen, "Reliability Assessment of Steel Plane Frame’s Buckling Strength Considering Semi-rigid Connections," Engineering, Technology & Applied Science Research, vol. 10, no. 1, pp. 5099–5103, Feb. 2020. DOI: https://doi.org/10.48084/etasr.3231
M. Aldosary, J. Wang, and C. Li, "Structural reliability and stochastic finite element methods: State-of-the-art review and evidence-based comparison," Engineering Computations, vol. 35, no. 6, pp. 2165–2214, Jan. 2018. DOI: https://doi.org/10.1108/EC-04-2018-0157
D. M. Frangopol, B. M. Kozy, B. Zhu, and S. Sabatino, "Bridge System Reliability and Reliability-Based Redundancy Factors," US Department of Transportation, Federal Highway Administration, Tech Report FHWA-HIF-19-093, Sep. 2019.
AASHTO LRFD Bridge Design Specifications, 8th ed. Washington DC, USA: AASHTO, 2017.
Downloads
How to Cite
License
Copyright (c) 2022 D. Mohammed, S. Al-Zaidee
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.