Assessing the Effect of Underground Void on Strip Footing Sitting on a Reinforced Sand Slope with Numerical Modeling
Received: 9 June 2022 | Revised: 19 June 2022 | Accepted: 20 June 2022 | Online: 7 August 2022
Corresponding author: B. Mazouz
Abstract
This paper presents the results of the numerical analysis undertaken to investigate the effect of the underground void on the load-bearing capacity of a strip footing placed on an unreinforced and geogrid-reinforced sand slope with a void inside. The failure mechanism of the soil was also investigated. The numerical model was obtained using 2D plane-strain FEM analysis (in Plaxis software), in which the nonlinear Mohr-Coulomb model was utilized. The effects of various parameters such as the number of geogrid layers (N), the vertical distance ratio between the top of the cavity from the base of footing (H/B), the horizontal distance of void centerline to the footing center (X/B), on the behavior of footing are studied in this research. The results indicate that there is a critical zone under the footing in which the existence of void has no influence on the bearing capacity and stability of the footing. In addition, the use of geogrid reinforcement reduces the settlement and enhances bearing capacity. Finally, the bearing capacity factor and failure mechanism increase with increasing horizontal and vertical void distances ratios (X/B and H/B) and reinforcement layers.
Keywords:
cavity, slope, strip footing, geogrid-reinforced, sand, finite element analysisDownloads
References
R. L. Baus and M. C. Wang, "Bearing Capacity of Strip Footing above Void," Journal of Geotechnical Engineering, vol. 109, no. 1, pp. 1–14, Jan. 1983. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1983)109:1(1)
A. Badie and M. C. Wang, "Stability of Spread Footing Above Void in Clay," Journal of Geotechnical Engineering, vol. 110, no. 11, pp. 1591–1605, Nov. 1984. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1984)110:11(1591)
M. C. Wang and A. Badie, "Effect of Underground Void on Foundation Stability," Journal of Geotechnical Engineering, vol. 111, no. 8, pp. 1008–1019, Aug. 1985. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1985)111:8(1008)
G. Azam, C. W. Hsieh, and M. C. Wang, "Performance of Strip Footing on Stratified Soil Deposit with Void," Journal of Geotechnical Engineering, vol. 117, no. 5, pp. 753–772, May 1991. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1991)117:5(753)
C. W. Hsieh and M. C. Wang, "Bearing capacity determination method for strip surface footings underlain by voids," Transportation Research Record, no. 1336, pp. 90–95, 1992.
M. Kiyosumi, O. Kusakabe, M. Ohuchi, and F. Le Peng, "Yielding Pressure of Spread Footing above Multiple Voids," Journal of Geotechnical and Geoenvironmental Engineering, vol. 133, no. 12, pp. 1522–1531, Dec. 2007. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1522)
D. W. Wilson, A. J. Abbo, S. W. Sloan, and A. V. Lyamin, "Undrained stability of dual square tunnels," Acta Geotechnica, vol. 10, no. 5, pp. 665–682, Oct. 2015. DOI: https://doi.org/10.1007/s11440-014-0340-1
W. H. Craig, "Collapse of cohesive overburden following removal of support," Canadian Geotechnical Journal, vol. 27, no. 3, pp. 355–364, Jun. 1990. DOI: https://doi.org/10.1139/t90-046
A. A. Lavasan, A. Talsaz, M. Ghazavi, and T. Schanz, "Behavior of Shallow Strip Footing on Twin Voids," Geotechnical and Geological Engineering, vol. 34, no. 6, pp. 1791–1805, Dec. 2016. DOI: https://doi.org/10.1007/s10706-016-9989-6
H. Zhou, G. Zheng, X. He, X. Xu, T. Zhang, and X. Yang, "Bearing capacity of strip footings on c–φ soils with square voids," Acta Geotechnica, vol. 13, no. 3, pp. 747–755, Jun. 2018. DOI: https://doi.org/10.1007/s11440-018-0630-0
J. Jayamohan, T. Shajahan, and A. Sasikumar, "Effect of Underground Void on the Internal Stress Distribution in Soil," in Ground Improvement Techniques and Geosynthetics, T. Thyagaraj, Ed. New York, NY, USA: Springer, 2019, pp. 45–56. DOI: https://doi.org/10.1007/978-981-13-0559-7_6
J. K. Lee and J. Kim, "Stability Charts for Sustainable Infrastructure: Collapse Loads of Footings on Sandy Soil with Voids," Sustainability, vol. 11, no. 14, Jan. 2019, Art. no. 3966. DOI: https://doi.org/10.3390/su11143966
M. Touahmia, "Performance of Geosynthetic-Reinforced Soils Under Static and Cyclic Loading," Engineering, Technology & Applied Science Research, vol. 7, no. 2, pp. 1523–1527, Apr. 2017. DOI: https://doi.org/10.48084/etasr.1035
A. Lazizi, H. Trouzine, A. Asroun, and F. Belabdelouhab, "Numerical Simulation of Tire Reinforced Sand behind Retaining Wall Under Earthquake Excitation," Engineering, Technology & Applied Science Research, vol. 4, no. 2, pp. 605–611, Apr. 2014. DOI: https://doi.org/10.48084/etasr.427
B. M. Das and K. H. Khing, "Foundation on layered soil with geogrid reinforcement — effect of a void," Geotextiles and Geomembranes, vol. 13, no. 8, pp. 545–553, Jan. 1994. DOI: https://doi.org/10.1016/0266-1144(94)90018-3
M. C. Wang, Y. X. Feng, and M. Jao, "Stability of geosynthetic-reinforced soil above a cavity," Geotextiles and Geomembranes, vol. 14, no. 2, pp. 95–109, Feb. 1996. DOI: https://doi.org/10.1016/0266-1144(96)84939-9
P. Villard, A. Huckert, and L. Briancon, "Load transfer mechanisms in geotextile-reinforced embankments overlying voids: Numerical approach and design," Geotextiles and Geomembranes, vol. 44, no. 3, pp. 381–395, Jun. 2016. DOI: https://doi.org/10.1016/j.geotexmem.2016.01.007
R. Shivashankar and S. Anaswara, "Bearing Capacity of Interfered Adjacent Strip Footings on Granular Bed Overlying Soft Clay: An Analytical Approach," Civil Engineering Journal, vol. 7, no. 7, pp. 1244–1263, Jul. 2021. DOI: https://doi.org/10.28991/cej-2021-03091723
M. A. Fam, G. Cascante, and M. B. Dusseault, "Large and Small Strain Properties of Sands Subjected to Local Void Increase," Journal of Geotechnical and Geoenvironmental Engineering, vol. 128, no. 12, pp. 1018–1025, Dec. 2002. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2002)128:12(1018)
A. Kapoor, B. S. Walia, and C. Singh, "Effect of Cavity on Bearing Capacity of Shallow Foundation in Reinforced Soil," in 1st International Conference on Sustainable Waste Management through Design, Ludhiana, India, Nov. 2018, pp. 313–322. DOI: https://doi.org/10.1007/978-3-030-02707-0_37
S. W. Agaiby and C. J. F. P. Jones, "Design of reinforced fill systems to support footings overlying cavities," Geotextiles and Geomembranes, vol. 14, no. 1, pp. 57–72, Jan. 1996. DOI: https://doi.org/10.1016/0266-1144(96)00005-2
J. P. Giroud, R. Bonaparte, J. F. Beech, and B. A. Gross, "Design of soil layer-geosynthetic systems overlying voids," Geotextiles and Geomembranes, vol. 9, no. 1, pp. 11–50, Jan. 1990. DOI: https://doi.org/10.1016/0266-1144(90)90004-V
L. Briancon and P. Villard, "Design of geosynthetic-reinforced platforms spanning localized sinkholes," Geotextiles and Geomembranes, vol. 26, no. 5, pp. 416–428, Oct. 2008. DOI: https://doi.org/10.1016/j.geotexmem.2007.12.005
S. Sireesh, T. G. Sitharam, and S. K. Dash, "Bearing capacity of circular footing on geocell–sand mattress overlying clay bed with void," Geotextiles and Geomembranes, vol. 27, no. 2, pp. 89–98, Apr. 2009. DOI: https://doi.org/10.1016/j.geotexmem.2008.09.005
S. N. Moghaddas Tafreshi, O. Khalaj, and M. Halvaee, "Experimental study of a shallow strip footing on geogrid-reinforced sand bed above a void," Geosynthetics International, vol. 18, no. 4, pp. 178–195, Aug. 2011. DOI: https://doi.org/10.1680/gein.2011.18.4.178
S. Anaswara and R. Shivashankar, "Study on Behaviour of Two Adjacent Strip Footings on Unreinforced/Reinforced Granular Bed Overlying Clay with Voids," Geotechnical and Geological Engineering, vol. 39, no. 3, pp. 1831–1848, Mar. 2021. DOI: https://doi.org/10.1007/s10706-020-01590-1
M. A. El Sawwaf, "Behavior of strip footing on geogrid-reinforced sand over a soft clay slope," Geotextiles and Geomembranes, vol. 25, no. 1, pp. 50–60, Feb. 2007. DOI: https://doi.org/10.1016/j.geotexmem.2006.06.001
I. Mehdipour, M. Ghazavi, and R. Z. Moayed, "Numerical study on stability analysis of geocell reinforced slopes by considering the bending effect," Geotextiles and Geomembranes, vol. 37, pp. 23–34, Apr. 2013. DOI: https://doi.org/10.1016/j.geotexmem.2013.01.001
E. Turker, E. Sadoglu, E. Cure, and B. A. Uzuner, "Bearing capacity of eccentrically loaded strip footings close to geotextile-reinforced sand slope," Canadian Geotechnical Journal, vol. 51, no. 8, pp. 884–895, Aug. 2014. DOI: https://doi.org/10.1139/cgj-2014-0055
A. Abdi, K. Abbeche, B. Mazouz, and R. Boufarh, "Bearing Capacity of an Eccentrically Loaded Strip Footing on Reinforced Sand Slope," Soil Mechanics and Foundation Engineering, vol. 56, no. 4, pp. 232–238, Sep. 2019. DOI: https://doi.org/10.1007/s11204-019-09596-5
D. A. Mangnejo, S. J. Oad, S. A. Kalhoro, S. Ahmed, F. H. Laghari, and Z. A. Siyal, "Numerical Analysis of Soil Slope Stabilization by Soil Nailing Technique," Engineering, Technology & Applied Science Research, vol. 9, no. 4, pp. 4469–4473, Aug. 2019. DOI: https://doi.org/10.48084/etasr.2859
K. Terzaghi, Theoretical Soil Mechanics. New York, NY, USA: Wiley, 1943. DOI: https://doi.org/10.1002/9780470172766
J. B. Hansen and S. Inan, A Revised and extended formula for bearing capacity. Copenhagen, Denmark: Geoteknisk Institut, 1970.
G. G. Meyerhof, "Some Recent Research on the Bearing Capacity of Foundations," Canadian Geotechnical Journal, vol. 1, no. 1, pp. 16–26, Sep. 1963. DOI: https://doi.org/10.1139/t63-003
A. S. Vesic, "Analysis of Ultimate Loads of Shallow Foundations," Journal of the Soil Mechanics and Foundations Division, vol. 99, no. 1, pp. 45–73, Jan. 1973. DOI: https://doi.org/10.1061/JSFEAQ.0001846
M. Hjiaj, A. V. Lyamin, and S. W. Sloan, "Numerical limit analysis solutions for the bearing capacity factor Nγ," International Journal of Solids and Structures, vol. 42, no. 5, pp. 1681–1704, Mar. 2005. DOI: https://doi.org/10.1016/j.ijsolstr.2004.08.002
Y. W. Yoon, S. H. Cheon, and D. S. Kang, "Bearing capacity and settlement of tire-reinforced sands," Geotextiles and Geomembranes, vol. 22, no. 5, pp. 439–453, Oct. 2004. DOI: https://doi.org/10.1016/j.geotexmem.2003.12.002
A. Ghosh, A. Ghosh, and A. K. Bera, "Bearing capacity of square footing on pond ash reinforced with jute-geotextile," Geotextiles and Geomembranes, vol. 23, no. 2, pp. 144–173, Apr. 2005. DOI: https://doi.org/10.1016/j.geotexmem.2004.07.002
I. F. Khouri et al., "Transplant-lite: induction of graft-versus-malignancy using fludarabine-based nonablative chemotherapy and allogeneic blood progenitor-cell transplantation as treatment for lymphoid malignancies.," Journal of Clinical Oncology, vol. 16, no. 8, pp. 2817–2824, Aug. 1998. DOI: https://doi.org/10.1200/JCO.1998.16.8.2817
B. Mazouz, K. Abbeche, A. Abdi, and M. Baazouzi, "Model experiments to assess effect of eccentric loading on the ultimate bearing capacity of a strip footing near a dry sand slope," International Journal of Geotechnical Engineering, vol. 15, no. 10, pp. 1241–1251, Nov. 2021. DOI: https://doi.org/10.1080/19386362.2019.1665385
Downloads
How to Cite
License
Copyright (c) 2022 B. Mazouz, T. Mansouri, M. Baazouzi, K. Abbeche
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.