Enhancing Voltage Profile and Power Loss Reduction Considering Distributed Generation (DG) Resources
Received: 7 May 2022 | Revised: 21 May 2022 | Accepted: 25 May 2022 | Online: 10 June 2022
Corresponding author: M. Salman
Abstract
In recent years, Distributed Generation (DG) has received attention due to its benefits to the distribution network. In this paper, the influence of DG along with several techniques for mitigating the detrimental impact on voltage profile and power losses was examined. The test system of 132 KV residential test feeder was selected, examined, and modeled in the Electrical Transient Analyzer Program (ETAP). Various tests were carried out to determine the influence of DG on the distribution network. Results were compared with, and without DG, taking into account the voltage profile. When injecting DG with unity power factor at different buses in a radial test system, it was discovered that when the DG of the right size and type is injected at the ideal position, the voltage profile improves while the power losses are reduced. When an un-deterministic DG is injected at multiple points on the test feeder, no improvement in voltage profile was observed. When the cross-sectional area of conductors is increased and a DG is injected at optimal locations, a positive impact on voltage profile is observed while the detrimental impact on power losses was also analyzed. The findings of this study may be useful to distribution firms regarding the future expansion of the power systems and the proliferation of DG.
Keywords:
Distributed generation, voltage level, power losses, synchronous generator, induction generatorDownloads
References
A. Al-Sakkaf and M. AlMuhaini, "Power Flow Analysis of Weakly Meshed Distribution Network Including DG," Engineering, Technology & Applied Science Research, vol. 8, no. 5, pp. 3398–3404, Oct. 2018. DOI: https://doi.org/10.48084/etasr.2277
B. Singh and J. Sharma, "A review on distributed generation planning," Renewable and Sustainable Energy Reviews, vol. 76, pp. 529–544, Sep. 2017. DOI: https://doi.org/10.1016/j.rser.2017.03.034
S. Essallah, A. Khedher, and A. Bouallegue, "Integration of distributed generation in electrical grid: Optimal placement and sizing under different load conditions," Computers & Electrical Engineering, vol. 79, Oct. 2019, Art. No. 106461. DOI: https://doi.org/10.1016/j.compeleceng.2019.106461
M. A. Aman, S. Ahmad, A. ul Asar, and B. Noor, "Analyzing the Diverse Impacts of Conventional Distributed Energy Resources on Distribution System," International Journal of Advanced Computer Science and Applications, vol. 8, no. 10, pp. 390–396.
T. Ackermann, G. Andersson, and L. Söder, "Distributed generation: a definition," Electric Power Systems Research, vol. 57, no. 3, pp. 195–204, Apr. 2001. DOI: https://doi.org/10.1016/S0378-7796(01)00101-8
A. Mirakhorli and B. Dong, "Model predictive control for building loads connected with a residential distribution grid," Applied Energy, vol. 230, pp. 627–642, Nov. 2018. DOI: https://doi.org/10.1016/j.apenergy.2018.08.051
A. Tariq, K. L. Khatri, M. I. U. Haque, M. A. Raza, S. Ahmed, and M. Muzammil, "Investigation of the Effects of Distributed Generation on Protection Coordination in a Power System," Engineering, Technology & Applied Science Research, vol. 11, no. 5, pp. 7628–7634, Oct. 2021. DOI: https://doi.org/10.48084/etasr.4338
S.-E. Razavi et al., "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, vol. 105, pp. 157–167, May 2019. DOI: https://doi.org/10.1016/j.rser.2019.01.050
S. Katyara, L. Staszewski, and Z. Leonowicz, "Protection Coordination of Properly Sized and Placed Distributed Generations–Methods, Applications and Future Scope," Energies, vol. 11, no. 10, Oct. 2018, Art. No. 2672. DOI: https://doi.org/10.3390/en11102672
N. Bayati, S. H. H. Sadeghi, and A. Hosseini, "Optimal Placement and Sizing of Fault Current Limiters in Distributed Generation Systems Using a Hybrid Genetic Algorithm," Engineering, Technology & Applied Science Research, vol. 7, no. 1, pp. 1329–1333, Feb. 2017. DOI: https://doi.org/10.48084/etasr.976
H. L. Willis and W. G. Scott, Distributed Power Generation: Planning and Evaluation. Boca Raton, FL, USA: CRC Press, 2018. DOI: https://doi.org/10.1201/9781315215006
D. Michaelson and J. Jiang, "Review of integration of small modular reactors in renewable energy microgrids," Renewable and Sustainable Energy Reviews, vol. 152, Dec. 2021, Art. No. 111638. DOI: https://doi.org/10.1016/j.rser.2021.111638
P. de Lima Vianna, M. Sabino Viana, G. Manassero, and M. E. Morales Udaeta, "A General Analysis of the Distributed Generation Impact on Electrical Energy Planning," in 2018 53rd International Universities Power Engineering Conference (UPEC), Glasgow, UK, Sep. 2018, pp. 1–6. DOI: https://doi.org/10.1109/UPEC.2018.8542020
C. K. Das, O. Bass, G. Kothapalli, T. S. Mahmoud, and D. Habibi, "Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality," Renewable and Sustainable Energy Reviews, vol. 91, pp. 1205–1230, Aug. 2018. DOI: https://doi.org/10.1016/j.rser.2018.03.068
M. A. Aman, S. Ahmad, B. Noor, and F. W. Karam, "Mitigating the Adverse Impact of Un-Deterministic Distributed Generation on a Distribution System Considering Voltage Profile," Engineering, Technology & Applied Science Research, vol. 8, no. 3, pp. 2998–3003, Jun. 2018. DOI: https://doi.org/10.48084/etasr.2033
N. Hantash, T. Khatib, and M. Khammash, "An Improved Particle Swarm Optimization Algorithm forOptimal Allocation of Distributed Generation Units in Radial Power Systems," Applied Computational Intelligence and Soft Computing, vol. 2020, Sep. 2020, Art. No. e8824988. DOI: https://doi.org/10.1155/2020/8824988
A. Rajendran and K. Narayanan, "Optimal multiple installation of DG and capacitor for energy loss reduction and loadability enhancement in the radial distribution network using the hybrid WIPSO–GSA algorithm," International Journal of Ambient Energy, vol. 41, no. 2, pp. 129–141, Jan. 2020. DOI: https://doi.org/10.1080/01430750.2018.1451371
Downloads
How to Cite
License
Copyright (c) 2022 M. Salman, S. Hongsheng, M. A. Aman, Y. Khan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.