Microstructure and Wear Behavior of TiC Coating Deposited on Spheroidized Graphite Cast Iron Using Laser Surfacing

  • E. R. I. Mahmoud Department of Manufacturing Technology, Central Metallurgical Research & Development Institute (CMRDI), Cairo, Egypt
  • H. F. El-Labban Department of Production Engineering, Alexandria University, Alexandria, Egypt
Keywords: spheroidal graphite cast iron, laser cladding, TiC particles, YAG fiber laser, wear resistance


Spheroidal graphite cast iron was laser cladded with TiC powder using a YAG fiber laser at powers of 700, 1000, 1500 and 2000 W. The powder was preplaced on the surface of the specimens with 0.5 mm thickness. Sound cladding and fusion zones were observed at 700, 1000 and 1500 W powers. However, at 2000 W, cracking was observed in the fusion zone.  At 700 W, a build-up zone consisted of fine TiC dendrites inside a matrix composed of martensite, cementite (Fe3C), and some blocks of retained austenite was observed. In this zone, all graphite nodules were totally melted. In the fusion zone, some undissolved and partially dissolved graphite nodules appeared in a matrix containing bainite, ferrite, martensite and retained austenite.  At 1500 W, the fusion zone had more iron carbides and ferrite, and the HAZ consisted of martensitic structure. At 2000 W, the build-up zone was consisted of TiC particles precipitated in a matrix of eutectic carbides, martensite plus an inter-lamellar retained austenite. The hardness of the cladded area was remarkably improved (1330 HV in case of 700 W: 5.5 times of the hardness of substrate).


Download data is not yet available.


M. Shamanian, S. M. R. Mousavi Abarghouie, S. R. Mousavi Pour, “Effects of surface alloying on microstructure and wear behavior of ductile iron”, Materials & Design, Vol. 31, No. 6, pp. 2760–2766, 2011

G. Sun, R. Zhou, P. Li, A. Feng, Y. Zhang, “Laser surface alloying of C-B-W-Cr powders on nodular cast iron rolls”, Surface and Coatings Technology, Vol. 205, No. 8-9, pp. 2747–2754, 2011

J. H. Abboud, “Microstructure and erosion characteristic of nodular cast iron surface modified by tungsten inert gas”, Materials & Design, Vol. 35, pp. 677–684, 2012

B. Podgornik, J. Vizintin, I. Thorbjornsson, B. Johannesson, J. T. Thorgrimsson, M. Martinez Celis, N. Valle, “Improvement of ductile iron wear resistance through local surface reinforcement”, Wear, Vol. 274– 275, pp. 267–273, 2012

A. Fernandez-Vicente, M. Pellizzari, J. L. Arias, “Feasibility of laser surface treatment of pearlitic and bainitic ductile irons for hot rolls”, Journal of Materials Processing Technology, Vol. 212, No. 5, pp. 989–1002, 2012

X. Qi, S. Zhu, H. Ding, Z. Zhu, Z. Han, “Microstructure and wear behaviors of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening”, Applied Surface Science, Vol. 282, pp. 672–679, 2013

K. F. Alabeedi, J.H. Abboud, K. Y. Benyounis, “Microstructure and erosion resistance enhancement of nodular cast iron by laser melting”, Wear, Vol. 266, No. 9-10, pp. 925–933, 2009

M. Heydarzadeh Sohi, M. Ebrahimi, H. M. Ghasemi, A. Shahripour, “Microstructural study of surface melted and chromium surface alloyed ductile iron”, Applied Surface Science, Vol. 258, No. 19, pp. 7348– 7353, 2012

K. Y. Benyounis, O. M. A. Fakron, J. H. Abboud, A. G. Olabi, M. J. S. Hashmi, “Surface melting of nodular cast iron by Nd-YAG laser and TIG”, Journal of Materials Processing Technology, Vol. 170, No. 1-2, pp. 127–132, 2005

D. Womersley, “Thermal spraying and powder spray welding processes for the hardfacing of grey cast iron”, Materials & Design, Vol. 11, No. 3, pp. 153-155, 1990

Y. Hoshiyama, T. Miyazaki, H. Miyake, “Zirconium carbide dispersed high Cr–Ni cast iron produced by plasma spraying”, Surface and Coatings Technology, Vol. 228, No. S-1, pp. S7-S10, 2013

R. Zenker, A. Buchwalder, K. Rüthrich, W. Griesbach, K. Nagel, “First results of a new duplex surface treatment for cast iron: Electron beam remelting and plasma nitriding”, Surface and Coatings Technology, Vol. 236, pp. 58-62, 2013

P. Fauchais, G. Montavon, “Plasma Spraying: From Plasma Generation to Coating Structure-Review Article”, in: Advances in Heat Transfer, Vol. 40, pp. 205-344, 2007

N. Yasavol, A. Abdollah-zadeh, M. Ganjali, S. A. Alidokht, ”Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel”, Applied Surface Science, Vol. 265, pp. 653–662, 2013

B. S. Yilbas, F. Patel, C. Karatas, “Laser controlled melting of HSLA steel surface with presence of B4C particles”, Applied Surface Science, Vol. 282, pp. 601– 606, 2013

S. P. Gadag, M. N. Srinivasan, B. L. Mordike, “Effect of laser processing parameters on the structure of ductile iron”, Materials Science and Engineering: A, Vol. 196, No. 1–2, pp. 145-154, 1995

R. Vilar, “Laser Powder Deposition”, in: Comprehensive Materials Processing, Vol. 10, pp. 163-216, 2014

B. Du, S. R. Paital, N. B. Dahotre, “Synthesis of TiB2–TiC/Fe nano-composite coating by laser surface engineering”, Optics & Laser Technology, Vol. 45, pp. 647-653, 2013

Y. F. Liu, J. S. Mu, X. Y. Xu, S. Z. Yang ”Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process”, Materials Science and Engineering A, Vol. 458, No. 1-2, pp. 366–370, 2007

W. H. Jiang, R. Kovacevic, “Laser deposited TiC/H13 tool steel composite coatings and their erosion resistance”, Journal of Materials Processing Technology, Vol. 186, No. 1-3, pp. 331–338, 2007

S. T. Gu, G. Z. Chai, H. P. Wu, Y. M. Bao, “Characterization of local mechanical properties of laser-cladding H13–TiC composite coatings using nanoindentation and finite element analysis”, Materials & Design, Vol. 39, pp. 72-80, 2012

D. Ravnikar, N. B. Dahotre, J. Grum, “Laser coating of aluminum alloy EN AW 6082-T651 with TiB2 and TiC: Microstructure and mechanical properties”, Applied Surface Science, Vol. 282, pp. 914-922, 2013

J. Sampedro, I. Pérez, B. Carcel, J. A. Ramos, V. Amigó, “Laser Cladding of TiC for Better Titanium Components”, Physics Procedia, Vol. 12-A, pp. 313–322, 2011

A. Chehrghani, M. J. Torkamany, M. J. Hamedi, J. Sabbaghzadeh, “Numerical modeling and experimental investigation of TiC formation on titanium surface pre-coated by graphite under pulsed laser irradiation”, Applied Surface Science, Vol. 258, No. 1, pp. 2068– 2076, 2012

A. Monfared, A. H. Kokabi, S. Asgari, “Microstructural studies and wear assessments of Ti/TiC surface composite coatings on commercial pure Ti produced by titanium cored wires and TIG process”, Materials Chemistry and Physics, Vol. 137, pp. 959-966, 2013.

R. M. Mahamood, E. T. Akinlabi, M. Shukla, S. Pityana, “Scanning velocity influence on microstructure, microhardness and wear resistance performance of laser deposited Ti6Al4V/TiC composite” Materials and Design, Vol. 50, pp. 656–666, 2013.

H. Yan, A. Wang, Z. Xiong, K. Xu, Z. Huang, “Microstructure and wear resistance of composite layers on a ductile iron with multicarbide by laser surface alloying”, Applied Surface Science, Vol. 256, No. 3, pp. 7001–7009, 2010


Abstract Views: 315
PDF Downloads: 55

Metrics Information
Bookmark and Share