Effect of Cement and Compaction on the Physicochemical Behavior of a Material in the Region of Sidi Bel Abbes

Authors

  • N. S. Ikhlef Civil Engineering Department, Djillali Liabes University of Sidi Bel Abbes, Algeria
  • M. S. Ghembaza Civil Engineering Department, Djillali Liabes University of Sidi Bel Abbes, Algeria
  • M. Dadouch Civil Engineering Department, Djillali Liabes University of Sidi Bel Abbes, Algeria
Volume: 4 | Issue: 4 | Pages: 677-680 | August 2014 | https://doi.org/10.48084/etasr.467

Abstract

Soil treatment describes the procedure under which a soil acquires certain characteristics that did not originally have. This paper is focused in the field of road earthworks and the treatment of a material found in the region of Sidi Bel Abbes, Algeria. This material has poor characteristics that do not meet the standards used in road geotechnics. To remedy this, firstly, the Proctor Standard characteristics of this material were improved using mechanical treatment that increased the compaction energy. Then a chemical treatment was employed, adding some cement dosages, and results show that the material classified in the A1h class, for an increased maximum dry density and a reduction in water content. A comparative study is made on the optimal properties of the material between the two modes of treatment. On the other hand, after treatment, one finds a decrease in the plasticity index and the methylene blue value. This material exhibits a change of class. Therefore, soil class CL turned into a soil class CL-ML (silt of low plasticity). This observation allows the material to be used as backfill or subgrade.

Keywords:

treatment of soil, cement, methylene blue value, embankment, subgrade

Downloads

Download data is not yet available.

References

A. L. Bell, “The development and importance of construction technique in deep vibratory ground improvement” in Ground and Soil Improvement, Thomas Telford, pp. 103-111, London, United Kingdom, 2004 DOI: https://doi.org/10.1680/gasi.31708.0014

B. C. Slocombe, A. L. BELL, J. I. BAEZ, “The densification of granular soils using vibro methods”, Geotechnique, Vol. 50, No. 6, pp. 715-725, 2000 DOI: https://doi.org/10.1680/geot.2000.50.6.715

E. E. Alonso, A. Gens, A. Lloret, “Precompression design for secondary settlement reduction”, Geotechnique, Vol. 50, No. 6, pp. 645-656, 2000 DOI: https://doi.org/10.1680/geot.2000.50.6.645

F. G. Bell, Engineering treatment of soils, Chapman and Hall, London, 1993 DOI: https://doi.org/10.1201/9781482288971

C. O Okagbue, J. A. Yakubu, “Limestone ash waste as a substitute for lime in soil improvement for engineering construction”, Bulletin of Engineering Geology and Environment, Vol. 58, No. 2, pp. 107-113, 2000 DOI: https://doi.org/10.1007/s100640050004

A. A. Al-Rawas, A. W. Hago, H. Al-Sarmi, “Effect of lime, cement and sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman”, Building and Environment, Vol. 40, No. 5, pp. 681-687, 2005 DOI: https://doi.org/10.1016/j.buildenv.2004.08.028

R. K. Goswami, B. Singh, “Influence of fly ash and lime on plasticity characteristics of residual lateritic soil”, Ground Improvement, Vol. 9, No. 4, pp. 175-182, 2005 DOI: https://doi.org/10.1680/grim.2005.9.4.175

S. Kolias, V. Kasselouri-Rigopoulou, A. Karahalios, “Stabilisation of clayey soils with high calcium fly ash and cement”, Cement and Concrete Composites, Vol. 27, No. 2, pp. 301-313, 2005 DOI: https://doi.org/10.1016/j.cemconcomp.2004.02.019

K. Harichache, M. Gherici, S. Kenai, "Effet de la chaux et de la pouzzolane naturelle sur le comportement de plasticité des sols argileux”, 1er Congrès international - DCDD2011- Tébessa, 17-19 2011

J. B. Croft, “The Structure of soils stabilized with cementitious agents”, Engineering Geology, Vol. 2, No. 2, pp. 63-80, 1967 DOI: https://doi.org/10.1016/0013-7952(67)90025-7

J. D. Nelson, D. J. Miller, Expansive soils: problems and practice in foundation and pavement engineering, John Wiley and Sons, New York, 1992

Guide Technique pour la réalisation des remblais et des couches de forme, fascicule I, principes généraux, 2000

AFNOR NF-P11-300, Exécution des terrassements, Classification des matériaux utilisables dans la construction des remblais et couche de forme, 1992

AFNOR NF P 94-68, Sols: reconnaissance et essais, Mesure de la capacité d'adsorption de bleu de méthylène d'un sol-Détermination de la valeur de bleu de méthylène d'un sol par l'essai à la tâche, 1998

AFNOR NF P 94-51, Sols: reconnaissance et essais, Détermination des limites d'Atterberg - Limite de liquidité à la coupelle-limite de plasticité au rouleau, 1993

AFNOR NF P 94-50, Sols: reconnaissance et essais, Détermination de la teneur en eau pondrale des matériaux-méthode par étuvage, 1995

AFNOR NF P 94-100, Sols: reconnaissance et essais, Matériaux traités à la chaux et/ou aux liants hydrauliques-Essai d'évaluation de l'aptitude d'un sol au traitement, 1999

D. T. Davidson, R. L. Handy, “Lime and lime applications” in Highway Engineering Handboo, pp. 23–98, M.C Graw Hill, New York, 1960.

O. L. Lund, W. J. Ramsey, “Experimental lime stabilization in Nebraska”, Highway Research Board Bulletin, Vol. 231, pp. 24–59, 1965

H. Newbauer, M. Thompson,. Stabilization properties of uncured lime-treated fined-grained soils. Highway Research Record, Vol. 381, pp. 20–26, 1972

J. Manasseh, A. I. Olufemi, “Effect of lime on some geotechnical properties of Igumale shale”, Electronic Journal of Geotechnical Engineering, 13A, pp. 1-12, 2008

D. Turker, E. Cokca, “Effects of addition of fly ash on swell potential of an expansive soil”, in Expansive soils-Recent advances in characterization and treatment, pp. 453-463, Taylor & Francis, London, UK, 2006

N. Degirmenci, A. Okucu, A. Turabi, “Application of phosphogypsum in soil stabilization”, Building and Environment, Vol. 42, No. 9, pp. 3393-3398, 2007 DOI: https://doi.org/10.1016/j.buildenv.2006.08.010

A. Reyes, M. Pando, “Evaluation of CFBC fly ash for improvement of soft clays”, World of Coal Ash (WOCA), Covington, Kentucky, USA, May 7-10, 2007

M. R. Thompson, “Lime-treated soils for pavement construction”, Journal Highway Division, Vol. 94, No. 2, pp. 59–67, 1965

R. N. Yong, V. R. Ouhadi, “Experimental study on instability of bases on natural and lime/cement stabilized clayey soils”, Applied Clay Science, Vol. 35, No. 3-4, pp. 238-249, 2007 DOI: https://doi.org/10.1016/j.clay.2006.08.009

N. O. Attoh-Okine, “Lime treatment of laterite soils and gravels-revisited”, Construction and Building Materials, Vol 9, No. 5, pp. 283-287, 1995 DOI: https://doi.org/10.1016/0950-0618(95)00030-J

F. G. Bell, “Lime stabilization of clay minerals and soils”, Engineering Geology, Vol. 42, No. 4, pp. 223-237, 1996 DOI: https://doi.org/10.1016/0013-7952(96)00028-2

A. S. Muntohar, G. Hantoro, “Influence of rice husk ash and lime on engineering properties of a clayey subgrade”, Electronic Journal of Geotechnical Engineering, Vol. 5A, pp. 1-9, 2000

E. A. Basha, R. Hashim, A. S. Muntohar, “Effect of the cement-rice husk ash on the plasticity and compaction of soil”, Electronic Journal of Geotechnical Engineering, Vol. 8A, pp. 1-8, 2003

R. L. Parsons., E. Kneebone, “Field performance of fly ash stabilized subgrade”, Ground Improvement, Vol. 9, No. 1, pp. 33-38, 2005 DOI: https://doi.org/10.1680/grim.9.1.33.58543

Downloads

How to Cite

[1]
N. S. Ikhlef, M. S. Ghembaza, and M. Dadouch, “Effect of Cement and Compaction on the Physicochemical Behavior of a Material in the Region of Sidi Bel Abbes”, Eng. Technol. Appl. Sci. Res., vol. 4, no. 4, pp. 677–680, Aug. 2014.

Metrics

Abstract Views: 415
PDF Downloads: 225

Metrics Information
Bookmark and Share

Most read articles by the same author(s)