DFT Investigation of the Structual and Optoelectronic Properties of Alkali Metal Hydrides MH (M=Li, Na)

Authors

  • T. Iliass Materials Science and Informatics Laboratory, Faculty of Science, University of Djelfa, Algeria
  • H. Ziani Materials Science and Informatics Laboratory, Faculty of Science, University of Djelfa, Algeria
  • A. Gueddim Materials Science and Informatics Laboratory, Faculty of Science, University of Djelfa, Algeria
  • A. D. Guibadj Laboratory of Physical Chemistry of Materials, Faculty of Science, University of Laghouat, Algeria
Volume: 12 | Issue: 1 | Pages: 8151-8156 | February 2022 | https://doi.org/10.48084/etasr.4645

Abstract

This paper presents ab initio calculations within the Density Functional Theory (DFT) for the structural and optoelectronic properties of the alkali metal hydrides LiH and NaH in rocksalt structure (B1). This study used the Generalized Gradient Approximation (GGA) of Wu-Cohen to consider the electronic exchange and correlation interactions. In addition, the Tran-Blaha modified Becke-Johnson exchange potential was used with the GGA approach (GGA-TBmBJ) to calculate the band structure with high accuracy. The structural properties, namely the lattice parameter, the bulk modulus, and the pressure derivative of the bulk modulus were determined and found to be generally in good agreement with other research findings. Furthermore, the energy band gaps, the Density Of States (DOS), the static and high-frequency dielectric constant, along the refractive index were addressed and analyzed. These results could be useful for hydrogen storage purposes.

Keywords:

Hydrogen storage, LiH, NaH, ab initio, mBJ-GGA

Downloads

Download data is not yet available.

References

L. Schlapbach and A. Züttel, "Hydrogen-storage materials for mobile applications," Nature, vol. 414, no. 6861, pp. 353–358, Nov. 2001. DOI: https://doi.org/10.1038/35104634

A. Léon, Hydrogen Technology: Mobile and Portable Applications. Berlin-Heidelberg, Germany: Springer Science & Business Media, 2008. DOI: https://doi.org/10.1007/978-3-540-69925-5

S. Javadpoor and D. Nazarpour, "Modeling a PV-FC-Hydrogen Hybrid Power Generation System," Engineering, Technology & Applied Science Research, vol. 7, no. 2, pp. 1455–1459, Apr. 2017. DOI: https://doi.org/10.48084/etasr.760

M. N. Kordkandy, A. Arash, and M. N. Kordkandy, "Hydrogen Gas Production in a Stand-Alone Wind Farm," Engineering, Technology & Applied Science Research, vol. 7, no. 2, pp. 1444–1449, Apr. 2017. DOI: https://doi.org/10.48084/etasr.991

A. H. El-Sinawi, "Production of Hydrogen from Poly Ethylene Terephthalate (PET) using CT 434 ZSM-5 Catalyst at Considerably Low Temperatures," Engineering, Technology & Applied Science Research, vol. 6, no. 6, pp. 1269–1273, Dec. 2016. DOI: https://doi.org/10.48084/etasr.822

R. S. Irani, "Hydrogen Storage: High-Pressure Gas Containment," MRS Bulletin, vol. 27, no. 9, pp. 680–682, Sep. 2002. DOI: https://doi.org/10.1557/mrs2002.221

V. A. Yartys and M. V. Lototsky, "An Overview of Hydrogen Storage Methods," in Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, Dordrecht, Netherlands, 2005, pp. 75–104. DOI: https://doi.org/10.1007/1-4020-2669-2_7

U. Eberle, M. Felderhoff, and F. Schüth, "Chemical and Physical Solutions for Hydrogen Storage," Angewandte Chemie International Edition, vol. 48, no. 36, pp. 6608–6630, Aug. 2009. DOI: https://doi.org/10.1002/anie.200806293

J. Wolf, "Liquid-Hydrogen Technology for Vehicles," MRS Bulletin, vol. 27, no. 9, pp. 684–687, Sep. 2002. DOI: https://doi.org/10.1557/mrs2002.222

N. T. Stetson and L. S. Blair, "Hydrogen Storage Technologies - A Tutorial with Perspectives from the US National Program," in Materials Challenges in Alternative and Renewable Energy, Hoboken, NJ, USA: John Wiley & Sons, 2012. DOI: https://doi.org/10.1002/9781118019467.ch1

"Definitions, Terminology, and Symbols in Colloid and Surface Chemistry," Pure and Applied Chemistry, vol. 31, no. 4, pp. 579–638, 1972.

J. Yang, A. Sudik, C. Wolverton, and D. J. Siegel, "High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery," Chemical Society Reviews, vol. 39, no. 2, pp. 656–675, Jan. 2010. DOI: https://doi.org/10.1039/B802882F

P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Physical Review, vol. 136, no. 3B, pp. B864–B871, Nov. 1964. DOI: https://doi.org/10.1103/PhysRev.136.B864

P. Blaha et al., WIEN2k - An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Vienna, Austria: Vienna University of Technology, 2021.

Z. Wu and R. E. Cohen, "More accurate generalized gradient approximation for solids," Physical Review B, vol. 73, no. 23, Jun. 2006, Art. no. 235116. DOI: https://doi.org/10.1103/PhysRevB.73.235116

F. Tran and P. Blaha, "Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential," Physical Review Letters, vol. 102, no. 22, Jun. 2009, Art. no. 226401. DOI: https://doi.org/10.1103/PhysRevLett.102.226401

H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations," Physical Review B, vol. 13, no. 12, pp. 5188–5192, Jun. 1976. DOI: https://doi.org/10.1103/PhysRevB.13.5188

A. Gueddim, N. Fakroun, N. Bouarissa, and A. Villesuzanne, "A density functional study of structural and elastic properties of LaN under high pressure," Materials Chemistry and Physics, vol. 118, no. 2, pp. 427–431, Dec. 2009. DOI: https://doi.org/10.1016/j.matchemphys.2009.08.012

A. Bellouche, A. Gueddim, S. Zerroug, and N. Bouarissa, "Elastic properties and optical spectra of ZnS1−xOx dilute semiconductor alloys," Optik, vol. 127, no. 23, pp. 11374–11378, Dec. 2016. DOI: https://doi.org/10.1016/j.ijleo.2016.09.034

A. Gueddim, M. E. Madjet, S. Zerroug, and N. Bouarissa, "First-principles investigations of electronic properties and optical spectra of Cd1−xMnxTe dilute magnetic semiconductors," Optical and Quantum Electronics, vol. 48, no. 12, Nov. 2016, Art. no. 551. DOI: https://doi.org/10.1007/s11082-016-0818-1

F. D. Murnaghan, "The Compressibility of Media under Extreme Pressures," Proceedings of the National Academy of Sciences of the United States of America, vol. 30, no. 9, pp. 244–247, Sep. 1944. DOI: https://doi.org/10.1073/pnas.30.9.244

N. Settouti and H. Aourag, "Structural and mechanical properties of alkali hydrides investigated by the first-principles calculations and principal component analysis," Solid State Sciences, vol. 58, pp. 30–36, Aug. 2016. DOI: https://doi.org/10.1016/j.solidstatesciences.2016.05.006

J. Zhang et al., "Phonon and elastic instabilities in rocksalt alkali hydrides under pressure: First-principles study," Physical Review B, vol. 75, no. 10, Mar. 2007, Art. no. 104115. DOI: https://doi.org/10.1103/PhysRevB.75.104115

J. Hama, K. Suito, and N. Kawakami, "First-principles calculation of the shock-wave equation of state of isotopic lithium hydrides," Physical Review B, vol. 39, no. 5, pp. 3351–3360, Feb. 1989. DOI: https://doi.org/10.1103/PhysRevB.39.3351

S. J. Duclos, Y. K. Vohra, A. L. Ruoff, S. Filipek, and B. Baranowski, "High-pressure studies of NaH to 54 GPa," Physical Review B, vol. 36, no. 14, pp. 7664–7667, Nov. 1987. DOI: https://doi.org/10.1103/PhysRevB.36.7664

W. Yu, C. Jin, and A. Kohlmeyer, "First principles calculation of phonon dispersion, thermodynamic properties andB1-to-B2 phase transition of lighter alkali hydrides," Journal of Physics: Condensed Matter, vol. 19, no. 8, Feb. 2007, Art. no. 086209. DOI: https://doi.org/10.1088/0953-8984/19/8/086209

A. Gueddim, S. Zerroug, and N. Bouarissa, "Composition dependence of the optical properties and band structure of the zinc-blende ZnS1-xOx: a first principles study," Philosophical Magazine, vol. 95, no. 24, pp. 2627–2638, Aug. 2015. DOI: https://doi.org/10.1080/14786435.2015.1073401

S. Zerroug, A. Gueddim, and N. Bouarissa, "Composition dependence of fundamental properties of Cd1-xCoxTe magnetic semiconductor alloys," Journal of Computational Electronics, vol. 15, no. 2, pp. 473–478, Jun. 2016. DOI: https://doi.org/10.1007/s10825-016-0802-9

A. Gueddim, S. Zerroug, N. Bouarissa, and N. Fakroun, "Study of the elastic properties and wave velocities of rocksalt Mg1−xFexO: ab initio calculations," Chinese Journal of Physics, vol. 55, no. 4, pp. 1423–1431, Aug. 2017. DOI: https://doi.org/10.1016/j.cjph.2017.04.009

M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors. Berlin-Heidelberg, Germany: Springer-Verlag, 1989. DOI: https://doi.org/10.1007/978-3-642-61338-8

R. M. Martin, Electronic Structure: Basic Theory and Practical Methods. Cambridge, UK: Cambridge University Press, 2020. DOI: https://doi.org/10.1017/9781108555586

A. Gueddim, R. Zerdoum, and N. Bouarissa, "Dependence of electronic properties on nitrogen concentration in GaAs1−xNx dilute alloys," Journal of Physics and Chemistry of Solids, vol. 67, no. 8, pp. 1618–1622, Aug. 2006. DOI: https://doi.org/10.1016/j.jpcs.2006.02.007

A. Gueddim and N. Bouarissa, "Electronic structure and optical properties of dilute InAs1-xNx: pseudopotential calculations," Physica Scripta, vol. 80, no. 1, Jun. 2009, Art. no. 015701. DOI: https://doi.org/10.1088/0031-8949/80/01/015701

I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III–V compound semiconductors and their alloys," Journal of Applied Physics, vol. 89, no. 11, pp. 5815–5875, Jun. 2001. DOI: https://doi.org/10.1063/1.1368156

S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors. Chichester, West Sussex, UK: John Wiley & Sons, 2009.

N. Bouarissa and F. Annane, "Electronic properties and elastic constants of the ordered Ge1−xSnx alloys," Materials Science and Engineering: B, vol. 95, no. 2, pp. 100–106, Aug. 2002. DOI: https://doi.org/10.1016/S0921-5107(02)00203-9

N. Bouarissa, "Electron and Positron Energy Levels and Deformation Potentials in Group-III Nitrides," Physica Status Solidi (B), vol. 231, no. 2, pp. 391–402, 2002. DOI: https://doi.org/10.1002/1521-3951(200206)231:2<391::AID-PSSB391>3.0.CO;2-J

S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors. Chichester, West Sussex, UK: John Wiley & Sons, Ltd, 2005. DOI: https://doi.org/10.1002/0470090340

F. E. Pretzel, G. N. Rupert, C. L. Mader, E. K. Storms, G. V. Gritton, and C. C. Rushing, "Properties of lithium hydride I. Single crystals," Journal of Physics and Chemistry of Solids, vol. 16, no. 1, pp. 10–20, Nov. 1960. DOI: https://doi.org/10.1016/0022-3697(60)90064-0

D. K. Blat, N. E. Zein, and V. I. Zinenko, "Calculations of phonon frequencies and dielectric constants of alkali hydrides via the density functional method," Journal of Physics: Condensed Matter, vol. 3, no. 29, pp. 5515–5524, Jul. 1991. DOI: https://doi.org/10.1088/0953-8984/3/29/006

S. Zerroug, A. Gueddim, M. Ajmal Khan, and N. Bouarissa, "Ab initio study of structural parameters and optical properties of ZnTe1−xOx," Superlattices and Microstructures, vol. 53, pp. 155–162, Jan. 2013. DOI: https://doi.org/10.1016/j.spmi.2012.09.015

A. Gueddim, S. Zerroug, and N. Bouarissa, "Optical characteristics of ZnTe1−xOx alloys from first-principles calculations," Journal of Luminescence, vol. 135, pp. 243–247, Mar. 2013. DOI: https://doi.org/10.1016/j.jlumin.2012.10.004

S. Ozaki and S. Adachi, "Optical constants of ZnSxSe1−x ternary alloys," Journal of Applied Physics, vol. 75, no. 11, pp. 7470–7475, Jun. 1994.

S. Ozaki and S. Adachi, "Optical constants of ZnSxSe1−x ternary alloys," Journal of Applied Physics, vol. 75, no. 11, pp. 7470–7475, Jun. 1994. DOI: https://doi.org/10.1063/1.356617

A. Gueddim and N. Bouarissa, "Theoretical investigation of the conduction and valence band offsets of GaAs1−x Nx/GaAs1−yNy heterointerfaces," Applied Surface Science, vol. 253, no. 17, pp. 7336–7341, Jun. 2007. DOI: https://doi.org/10.1016/j.apsusc.2007.03.019

A. Gueddim, R. Zerdoum, and N. Bouarissa, "Effect of nitrogen concentration on mechanical properties of GaAs1−xNx dilute alloys," Materials Science and Engineering: B, vol. 131, no. 1, pp. 111–115, Jul. 2006. DOI: https://doi.org/10.1016/j.mseb.2006.03.032

P. Hervé and L. K. J. Vandamme, "General relation between refractive index and energy gap in semiconductors," Infrared Physics & Technology, vol. 35, no. 4, pp. 609–615, Jun. 1994. DOI: https://doi.org/10.1016/1350-4495(94)90026-4

N. M. Ravindra, P. Ganapathy, and J. Choi, "Energy gap–refractive index relations in semiconductors – An overview," Infrared Physics & Technology, vol. 50, no. 1, pp. 21–29, Mar. 2007. DOI: https://doi.org/10.1016/j.infrared.2006.04.001

R. C. Weast, Handbook of Chemistry and Physics. Boca Ration, FL, USA: John Wiley & Sons, 1972.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors. Berlin, Heidelberg, Germany: Springer, 2010.

Downloads

How to Cite

[1]
T. Iliass, H. Ziani, A. Gueddim, and A. D. Guibadj, “DFT Investigation of the Structual and Optoelectronic Properties of Alkali Metal Hydrides MH (M=Li, Na)”, Eng. Technol. Appl. Sci. Res., vol. 12, no. 1, pp. 8151–8156, Feb. 2022.

Metrics

Abstract Views: 315
PDF Downloads: 222

Metrics Information
Bookmark and Share

Most read articles by the same author(s)