Numerical Study of the Effect of the Penetration of a Crack in the Matrix of a Composite
Abstract
In this numerical investigation, the effect of the penetration of a crack in a matrix reinforced by aluminum silicon carbide particles in a composite is studied in order to determine the thermo-mechanical behavior under the effect of different temperature gradients during cooling. To realize this, the thermal residual stresses are calculated by considering a wide range of cracks of different penetrations. The results of this investigation compared to a case without geometric discontinuity, have revealed no meaningful effect of the distribution of the stresses along a main direction perpendicular to the direction of the crack. On the other hand, regarding the distribution of the stresses along the plane of the crack and in vicinity of the particle, results show that the penetration of the crack in the matrix causes an asymmetry.
Keywords:
Metal matrix composites, Al/SiC, thermal residual stress, penetration, crackDownloads
References
D. J. Chellman, S. L. Langenbeck, “Aerospace applications of advanced aluminum alloys”, Key Engineering Materials, Vol. 77–78, pp. 49–60, 1993 DOI: https://doi.org/10.4028/www.scientific.net/KEM.77-78.49
M. Shanthi, C. Y. H. Lim, L. Lu, “Effects of grain size on the wear of recycled AZ91 Mg”, Tribology International, Vol. 40, No. 2, pp. 335-338, 2007 DOI: https://doi.org/10.1016/j.triboint.2005.11.025
P. Kenesei, A. Borbély, H. Biermann, “Microstructure based three-dimensional finite element modeling of particulate reinforced metal–matrix composites”, Materials Science and Engineering A, Vol. 387–389, pp. 852–856, 2004 DOI: https://doi.org/10.1016/j.msea.2004.02.076
M. Surry, C. Teodosiu, L. F. Menezes, “Thermal residual stresses in particle-reinforced /viscoplastic metal matrix composites”, Materials Science and Engineering A, Vol. 167, No. 1-2, pp. 97-105, 1993 DOI: https://doi.org/10.1016/0921-5093(93)90342-C
G. Meijer , F. Ellyin, Z. Xia, “Aspects of residual thermal stress/strain in particle reinforced metal matrix composites”, Composites Part B: Engineering, Vol. 31, No. 1, pp. 29–37, 2000 DOI: https://doi.org/10.1016/S1359-8368(99)00060-8
D. Ouinas, B. Bachir Bouiadjra, N. Benderdouche, “Interaction effect of a main crack emanating from a semicircular notch and a microcrack”, Computational Materials Science, Vol. 43, No. 4, pp. 1155–1159, 2008 DOI: https://doi.org/10.1016/j.commatsci.2008.03.014
D. Ouinas, B. Bachir Bouiadjra, N. Benderdouche, B. Ait Saadi, J. Vina, “Numerical modelling of the interaction macro–multimicrocracks in a plate under tensile stress”, Journal of Computational Science, Vol. 2, No. 2, pp. 153-164, 2011 DOI: https://doi.org/10.1016/j.jocs.2010.12.009
J. Llorca, C. Gonzalez, “Microstructural factors controlling the strength and ductility of particle reinforced metal-matrix composites”, Journal of the Mechanics and Physics of Solids, Vol. 46, No. 1, pp. 1–28, 1998 DOI: https://doi.org/10.1016/S0022-5096(97)00038-0
J. Llorca, J. Segurado, “Three-dimensional multiparticle cell simulations of deformation and damage in sphere-reinforced composites”, Materials Science and Engineering A, Vol. 365, No. 1-2, pp. 267–274, 2004 DOI: https://doi.org/10.1016/j.msea.2003.09.035
J. Segurado, J. Llorca, “A new three-dimensional interface finite element to simulate fracture in composites”, International Journal of Solids and Structures, Vol. 41, pp. 2977–2993, 2004 DOI: https://doi.org/10.1016/j.ijsolstr.2004.01.007
ABAQUS, User’s Manual, 6.11, Dassault Systèmes Simulia Corp, 2011.
F. Bouafia, B. Serier, B. Bachir Bouiadjra, “Finite element analysis of the thermal residual stresses of SiC particle reinforced aluminum composite”, Computational Materials Science, Vol. 54, pp. 195-203, 2012 DOI: https://doi.org/10.1016/j.commatsci.2011.10.030
Downloads
How to Cite
License
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.