Drag Reduction Using Biomimetic Sharkskin Denticles
Received: 20 July 2021 | Revised: 10 August 2021 | Accepted: 21 August 2021 | Online: 12 October 2021
Corresponding author: D. Bhatia
Abstract
This paper explores the use of sharkskin in improving the aerodynamic performance of aerofoils. A biomimetic analysis of the sharkskin denticles was conducted and the denticles were incorporated on the surface of a 2-Dimensional (2D) NACA0012 aerofoil. The aerodynamic performance including the drag reduction rate, lift enhancement rate, and Lift to Drag (L/D) enhancement rate for sharkskin denticles were calculated at different locations along the chord line of the aerofoil and at different Angles of Attack (AOAs) through Computational Fluid Dynamics (CFD). Two different denticle orientations were tested. Conditional results indicate that the denticle reduces drag by 4.3% and attains an L/D enhancement ratio of 3.6%.
Keywords:
biomimetics, sharkskin denticles, flow control, drag reduction, CFDDownloads
References
D. A. Pamplona and C. J. P. Alves, "Civil Aircraft Emissions Study and Pollutant Forecasting at a Brazilian Airport," Engineering, Technology & Applied Science Research, vol. 10, no. 1, pp. 5217-5220, Feb. 2020. https://doi.org/10.48084/etasr.3227
A. A. Khaskheli, G. D. Walasai, A. S. Jamali, Q. B. Jamali, Z. A. Siyal, and A. Mengal, "Performance Evaluation of Locally-Produced Waste Cooking Oil Biodiesel with Conventional Diesel Fuel," Engineering, Technology & Applied Science Research, vol. 8, no. 6, pp. 3521-3524, Dec. 2018. https://doi.org/10.48084/etasr.2333
"U.S. Product Supplied for Crude Oil and Petroleum Products," US Energy Information Administration. https://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbbl_m.htm (accessed Sep. 10, 2021).
D. Bhatia et al., "Transition Delay and Drag Reduction using Biomimetically Inspired Surface Waves," Journal of Applied Fluid Mechanics, vol. 13, no. 4, pp. 1207-1222, Dec. 2019. https://doi.org/10.36884/jafm.13.04.30316
B. Dean and B. Bhushan, "Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 368, no. 1929, pp. 4775-4806, Oct. 2010. https://doi.org/10.1098/rsta.2010.0201
G. D. Bixler and B. Bhushan, "Fluid Drag Reduction with Shark-Skin Riblet Inspired Microstructured Surfaces," Advanced Functional Materials, vol. 23, no. 36, pp. 4507-4528, 2013. https://doi.org/10.1002/adfm.201203683
L. Wen, J. C. Weaver, and G. V. Lauder, "Biomimetic shark skin: design, fabrication and hydrodynamic function," Journal of Experimental Biology, vol. 217, no. 10, pp. 1656-1666, May 2014. https://doi.org/10.1242/jeb.097097
F.-W. Patricia, D. Guzman, B. Iñigo, I. Urtzi, B. J. Maria, and S. Manu, "Morphological Characterization and Hydrodynamic Behavior of Shortfin Mako Shark (Isurus oxyrinchus) Dorsal Fin Denticles," Journal of Bionic Engineering, vol. 16, no. 4, pp. 730-741, Jul. 2019. https://doi.org/10.1007/s42235-019-0059-7
D. Bolster, R. E. Hershberger, and R. J. Donnelly, "Dynamic similarity, the dimensionless science," Physics Today, vol. 64, no. 9, pp. 42-47, Sep. 2011. https://doi.org/10.1063/PT.3.1258
F. L. Bachleda, Dangerous Wildlife in California & Nevada: A Guide to Safe Encounters At Home and in the Wild, 1st ed. Birmingham, AL, USA: Menasha Ridge Press, 2002.
Simulation CFD External Flow Validation: NACA 0012 Airfoil. Autodesk, 2015.
"Polars for NACA 0012 AIRFOILS (n0012-il)," Airfoil Tools. http://airfoiltools.com/airfoil/details?airfoil=n0012-il#polars (accessed Sep. 10, 2021).
Downloads
How to Cite
License
Copyright (c) 2021 D. Bhatia, Y. Zhao, D. Yadav, J. Wang
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.