Examination of the Chance Constrained Optimal WT Penetration Level in Distorted Distribution Network with Wind Speed and Load Uncertainties
Received: 7 May 2021| Revised: 2 June 2021 | Accepted: 7 June 2021 | Online: 21 August 2021
Corresponding author: I. C. Barutcu
Abstract
Harmonic penetration can be problematic by the growing interconnection of Wind Turbines (WTs) in distribution networks. Since the active power outputs of WTs and loads in the distribution system have uncertainties, the optimal WT penetration level problem can be considered to have a stochastic nature. In this study, this problem is taken into account in the stochastic optimization method with the consideration of uncertainties in wind speed and distribution network load profile. Chance constraint programming is taken into account in the determination of optimal WT penetration levels by applying the Genetic Algorithm (GA) along with Monte Carlo Simulation (MCS). The harmonic power flow analysis based on the decoupled harmonic load flow approach is employed in the distorted distribution network. Chance constraints are considered for the harmonic issues such as the Total Harmonic Distortion of Voltage (VTHD), Individual Harmonic Distortion of Voltage (VIHDh), and Root Mean Square of Voltage (VRMS).
Keywords:
chance constraint programming, wind turbine, distribution network, stochastic optimizationDownloads
References
G. Mustafa, M. H. Baloch, S. H. Qazi, S. Tahir, N. Khan, and B. A. Mirjat, "Experimental investigation and control of a hybrid (PV-Wind) energy power system," Engineering, Technology & Applied Science Research, vol. 11, no. 1, pp. 6781-6786, Feb. 2021. https://doi.org/10.48084/etasr.3964
U. Vargas, G. C. Lazaroiu, and A. Ramirez, "Experimental validation of a hybrid TD/FEHD model of a wind turbine generator for harmonic transient analysis," Electric Power Systems Research, vol. 163, pp. 49-58, Oct. 2018. https://doi.org/10.1016/j.epsr.2018.05.025
Z. Yuan, W. Wang, and X. Fan, "Back propagation neural network clustering architecture for stability enhancement and harmonic suppression in wind turbines for smart cities," Computers & Electrical Engineering, vol. 74, pp. 105-116, Mar. 2019. https://doi.org/10.1016/j.compeleceng.2019.01.006
R. Boopathi, R. Jayanthi, and M. M. T. Ansari, "Maximum power point tracking-based hybrid pulse width modulation for harmonic reduction in wind energy conversion systems," Computers & Electrical Engineering, vol. 86, Sept. 2020, Art. no. 106711. https://doi.org/10.1016/j.compeleceng.2020.106711
M. H. J. Bollen and K. Yang, "Harmonic aspects of wind power integration," Journal of Modern Power Systems and Clean Energy, vol. 1, no. 1, pp. 14-21, Jun. 2013. https://doi.org/10.1007/s40565-013-0001-7
T. Thiringer, T. Petru, and C. Liljegren, "Power quality impact of a sea located hybrid wind park," IEEE Transactions on Energy Conversion, vol. 16, no. 2, pp. 123-127, Jun. 2001. https://doi.org/10.1109/60.921462
J. H. Teng, R. C. Leou, C. Y. Chang, and S. Y. Chan, "Harmonic current predictors for wind turbines," Energies, vol. 6, no. 3, pp. 1314-1328, Mar. 2013. https://doi.org/10.3390/en6031314
S. T. Tentzerakis and S. A. Papathanassiou, "An investigation of the harmonic emissions of wind turbines," IEEE Transactions on Energy Conversion, vol. 22, no. 1, pp. 150-158, Feb. 2007. https://doi.org/10.1109/TEC.2006.889607
L. Sainz, J. J. Mesas, R. Teodorescu, and P. Rodriguez, "Deterministic and stochastic study of wind farm harmonic currents," IEEE Transactions on Energy Conversion, vol. 25, no. 4, pp. 1071-1080, Jun. 2010. https://doi.org/10.1109/TEC.2010.2045379
S. Liang, Q. Hu, and W. J. Lee, "A survey of harmonic emissions of a commercially operated wind farm," IEEE Transactions on Industry Applications, vol. 48, no. 3, pp. 1115-1123, Apr. 2012. https://doi.org/10.1109/TIA.2012.2190702
V. R. Pandi, H. H. Zeineldin, and W. Xiao, "Determining optimal location and size of distributed generation resources considering harmonic and protection coordination limits," IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1245-1254, Aug. 2012. https://doi.org/10.1109/TPWRS.2012.2209687
V. Hengsritawat, and T. Tayjasanant, "Impacts of load models and power factor control on optimal sizing of photovoltaic distributed generators in a distribution system," IEEJ Transactions on Electrical and Electronic Engineering, vol. 7, no. 6, pp. 567-573, Sept. 2012. https://doi.org/10.1002/tee.21774
Y. Zhao, H. Deng, J. Li, and D. Xia, "Optimal planning of harmonic filters on distribution systems by chance constrained programming," Electric Power Systems Research, vol. 68, no. 2, pp. 149-156, Feb. 2004. https://doi.org/10.1016/S0378-7796(03)00156-1
M. R. Jannesar, A. Sedighi, M. Savaghebi, A. Anvari-Moghaddam, and J. M. Guerrero, "Optimal probabilistic planning of passive harmonic filters in distribution networks with high penetration of photovoltaic generation," International Journal of Electrical Power & Energy Systems, vol. 110, pp. 332-348, Sept. 2019. https://doi.org/10.1016/j.ijepes.2019.03.025
A. Ulinuha, M. A. S. Masoum, and S. M. Islam, "Harmonic power flow calculations for a large power system with multiple nonlinear loads using decoupled approach," in 2007 Australasian Universities Power Engineering Conference, Perth, WA, Australia, Dec. 2007, pp. 1-6. https://doi.org/10.1109/AUPEC.2007.4548132
V. Kumar and S. K. Dhull, "Genetic Algorithm based optimization of uniform circular array," Engineering, Technology & Applied Science Research, vol. 10, no. 6, pp. 6403-6409, Dec. 2020. https://doi.org/10.48084/etasr.3792
J. Zhu, Optimization of power system operation, 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, 2015. https://doi.org/10.1002/9781118887004
D.C. Montgomery and G.C. Runger, Applied Statistics and Probability for Engineers, 5th ed. Hoboken, NJ, USA: John Wiley & Sons, 2010.
"Recommended Practices and Requirements for Harmonic Control in Electric Power Systems,"IEEE Standard 519-2014, 2014.
U. H. Ramadhani, M. Shepero, J. Munkhammar, J. Widen, and N. Etherden, "Review of probabilistic load flow approaches for power distribution systems with photovoltaic generation and electric vehicle charging," International Journal of Electrical Power & Energy Systems, vol. 120, Sept. 2020, Art. no. 106003. https://doi.org/10.1016/j.ijepes.2020.106003
Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R. Seethapathy, "Optimal renewable resources mix for distribution system energy loss minimization," IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 360-370, Oct. 2009. https://doi.org/10.1109/TPWRS.2009.2030276
M. Milovanovic, J. Radosavljevic, and B. Perovic, "A backward/forward sweep power flow method for harmonic polluted radial distribution systems with distributed generation units," International Transactions on Electrical Energy Systems, vol. 30, no. 5, Dec. 2019, Art. no. e12310. https://doi.org/10.1002/2050-7038.12310
G. Papaefthymiou, P. H. Schavemaker, L. van der Sluis, W. L. Kling, D. Kurowicka, and R. M. Cooke, "Integration of stochastic generation in power systems," International Journal of Electrical Power & Energy Systems, vol. 28, no. 9, pp. 655-667, Nov. 2006. https://doi.org/10.1016/j.ijepes.2006.03.004
A. Sehgal, H. M. La, S. J. Louis, and H. Nguyen, "Deep reinforcement learning using genetic algorithm for parameter optimization," in 2019 Third IEEE International Conference on Robotic Computing, Naples, Italy, Feb. 2019, pp. 596-601. https://doi.org/10.1109/IRC.2019.00121
A. Faza, "A probabilistic model for estimating the effects of photovoltaic sources on the power systems reliability," Reliability Engineering & System Safety, vol. 171, pp. 67-77, Mar. 2018. https://doi.org/10.1016/j.ress.2017.11.008
Downloads
How to Cite
License
Copyright (c) 2021 Author
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) after its publication in ETASR with an acknowledgement of its initial publication in this journal.