Facile Coating of HAP on Ti6Al4V for Osseointegration


  • S. Asrar Department of Metallurgical Engineering, NED University of Engineering and Technology, Pakistan
  • M. Tufail NED University of Engineering and Technology, Pakistan
  • A. D. Chandio Department of Metallurgical Engineering, NED University of Engineering and Technology, Pakistan https://orcid.org/0000-0003-4115-2070


Ti6Al4V alloy is a material with great strength, low-slung modulus, inferior density, and a virtuous blend of mechanical and exceptional corrosion resistance. However, it does not offer good osseointegration and bone development properties. Conversely, hydroxyapatite (HAP) is highly bioactive in nature to bind with the nearby bone tissues when implanted in the host body. In this work, we have extracted HAP from bovine bones by using the thermal decomposition method. This was followed by its deposition onto the Ti6Al4V alloy using the Electrophoretic Deposition (EPD) technique. TiO2 is used as a bond coat layer to increase the adhesion between HAP and Ti6Al4V alloy substrates. The coated samples after sintering exhibited excellent adhesion. This was followed by characterization using Scanning Electron Microscopy (SEM) and Fourier Transformed Infrared Spectroscopy (FTIR). FTIR and SEM confirm the formation of HAP and its presence after the immersion in SBF. Vicker hardness tester confirms the increase in hardness value of coated samples up to 35%. Potentiostat tests were conducted to compare the corrosion rate of both samples. In addition, the particle sizes were also identified by a laser particle analyzer, whereas X-Ray Diffraction (XRD) technique was also used to determine the crystalline phases of alloy and HAP.


corrosion, electrophoretic deposition, hydroxiapatite, simulated body fluid, Ti6Al4V alloy


Download data is not yet available.


M. T. Mohammed, Z. A. Khan, and A. N. Siddiquee, “Surface Modifications of Titanium Materials for developing Corrosion Behavior in Human Body Environment: A Review,” Procedia Materials Science, vol. 6, pp. 1610–1618, Jan. 2014. DOI: https://doi.org/10.1016/j.mspro.2014.07.144

F. Trevisan et al., “Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications,” Journal of Applied Biomaterials & Functional Materials, vol. 16, no. 2, pp. 57–67, Apr. 2018. DOI: https://doi.org/10.5301/jabfm.5000371

M. Lepicka and M. Gradzka-Dahlke, “Surface modification of Ti6Al4V titanium alloy for biomedical applications and its effect on tribological performance - A review,” Reviews on Advanced Materials Science, vol. 46, no. 1, pp. 86–103, 2016.

J. W. Nicholson, “Titanium Alloys for Dental Implants: A Review,” Prosthesis, vol. 2, no. 2, pp. 100–116, Jun. 2020. DOI: https://doi.org/10.3390/prosthesis2020011

W. Liu, S. Liu, and L. Wang, “Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications,” Coatings, vol. 9, no. 4, Apr. 2019, Art. no. 249. DOI: https://doi.org/10.3390/coatings9040249

M. L. Lourenço, G. C. Cardoso, K. dos S. J. Sousa, T. A. G. Donato, F. M. L. Pontes, and C. R. Grandini, “Development of novel Ti-Mo-Mn alloys for biomedical applications,” Scientific Reports, vol. 10, no. 1, p. 6298, Apr. 2020. DOI: https://doi.org/10.1038/s41598-020-62865-4

M. Kulkarni, A. Mazare, and P. Schmuki, “Biomaterial Surface Modification Of Titanium and Titanium Alloys for Medical Applications,” in Nanomedicine, Cheshire, UK: One Central Press, 2014, pp. 111–136.

M. J. Jackson, J. Kopac, M. Balazic, D. Bombac, M. Brojan, and F. Kosel, “Titanium and Titanium Alloy Applications in Medicine,” in Surgical Tools and Medical Devices, W. Ahmed and M. J. Jackson, Eds. New York, NY, USA: Springer, 2016, pp. 475–517. DOI: https://doi.org/10.1007/978-3-319-33489-9_15

Damisih, I. N. Jujur, J. Sah, Agustanhakri, and D. H. Prajitno, “Characteristics microstructure and microhardness of cast Ti-6Al-4V ELI for biomedical application submitted to solution treatment,” AIP Conference Proceedings, vol. 1964, no. 1, May 2018, Art. no. 020037. DOI: https://doi.org/10.1063/1.5038319

D. Aroussi, B. Aour, and A. S. Bouaziz, “A Comparative Study of 316L Stainless Steel and a Titanium Alloy in an Aggressive Biological Medium,” Engineering, Technology & Applied Science Research, vol. 9, no. 6, pp. 5093–5098, Dec. 2019. DOI: https://doi.org/10.48084/etasr.3208

S.-W. Lee et al., “Hydroxyapatite and Collagen Combination-Coated Dental Implants Display Better Bone Formation in the Peri-Implant Area Than the Same Combination Plus Bone Morphogenetic Protein-2–Coated Implants, Hydroxyapatite Only Coated Implants, and Uncoated Implants,” Journal of Oral and Maxillofacial Surgery, vol. 72, no. 1, pp. 53–60, Jan. 2014. DOI: https://doi.org/10.1016/j.joms.2013.08.031

A. Boudjemline, M. Boujelbene, and E. Bayraktar, “Surface Quality of Ti-6Al-4V Titanium Alloy Parts Machined by Laser Cutting,” Engineering, Technology & Applied Science Research, vol. 10, no. 4, pp. 6062–6067, Aug. 2020. DOI: https://doi.org/10.48084/etasr.3719

F. Zhang, A. Weidmann, J. B. Nebe, U. Beck, and E. Burkel, “Preparation, microstructures, mechanical properties, and cytocompatibility of TiMn alloys for biomedical applications,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 94B, no. 2, pp. 406–413, 2010. DOI: https://doi.org/10.1002/jbm.b.31668

P. Shanmugapriya, V. Srinivasan, B. Karthikeyan, and T.V.Rajamurugan, “Surface modification of nanocomposite Al2O3/Gr/HAP coating for improving wear and corrosion behaviour on Ti–6Al–4V alloy using sol–gel technique,” Multiscale and Multidisciplinary Modeling, Experiments and Design, Jan. 2021. DOI: https://doi.org/10.1007/s41939-021-00089-3

L. Xia, Y. Xie, B. Fang, X. Wang, and K. Lin, “In situ modulation of crystallinity and nano-structures to enhance the stability and osseointegration of hydroxyapatite coatings on Ti-6Al-4V implants,” Chemical Engineering Journal, vol. 347, pp. 711–720, Sep. 2018. DOI: https://doi.org/10.1016/j.cej.2018.04.045

X. Liu, S. Chen, J. K. H. Tsoi, and J. P. Matinlinna, “Binary titanium alloys as dental implant materials—a review,” Regenerative Biomaterials, vol. 4, no. 5, pp. 315–323, Oct. 2017. DOI: https://doi.org/10.1093/rb/rbx027

M. Alqattan, L. Peters, Y. Alshammari, F. Yang, and L. Bolzoni, “Antibacterial Ti-Mn-Cu alloys for biomedical applications,” Regenerative Biomaterials, vol. 8, Feb. 2021, Art. no. rbaa050. DOI: https://doi.org/10.1093/rb/rbaa050

T. Hryniewicz, K. Rokosz, J. Valicek, and R. Rokicki, “Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial,” Materials Letters, vol. 83, pp. 69–72, Sep. 2012. DOI: https://doi.org/10.1016/j.matlet.2012.06.010

L. Benea, E. Mardare-Danaila, M. Mardare, and J.-P. Celis, “Preparation of titanium oxide and hydroxyapatite on Ti–6Al–4V alloy surface and electrochemical behaviour in bio-simulated fluid solution,” Corrosion Science, vol. 80, pp. 331–338, Mar. 2014. DOI: https://doi.org/10.1016/j.corsci.2013.11.059

J. Jakubowicz, “Special Issue: Ti-Based Biomaterials: Synthesis, Properties and Applications,” Materials, vol. 13, no. 7, p. 1696, Jan. 2020. DOI: https://doi.org/10.3390/ma13071696

U. F. Gunputh and H. Le, “A Review of In-Situ Grown Nanocomposite Coatings for Titanium Alloy Implants,” Journal of Composites Science, vol. 4, no. 2, Jun. 2020, Art. no. 41. DOI: https://doi.org/10.3390/jcs4020041

U.-W. Jung et al., “Surface characteristics of a novel hydroxyapatite-coated dental implant,” Journal of Periodontal & Implant Science, vol. 42, no. 2, pp. 59–63, Apr. 2012. DOI: https://doi.org/10.5051/jpis.2012.42.2.59

Y. Kirmanidou et al., “New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review,” BioMed Research International, vol. 2016, Jan. 2016, Art. no. e2908570. DOI: https://doi.org/10.1155/2016/2908570

F. Findik, “Surface Treatment of Ti-Alloys,” Current Trends in Biomedical Engineering & Biosciences, vol. 15, no. 3, Jun. 2018, Art. no. 555911. DOI: https://doi.org/10.19080/CTBEB.2018.15.555911

J. Sharan, S. V. Lale, V. Koul, M. Mishra, and O. P. Kharbanda*, “An Overview of Surface Modifications of Titanium and its Alloys for Biomedical Applications,” Trends in Biomaterials & Artificial Organs, vol. 29, no. 2, pp. 176–187, Jun. 2015.

A. Jaafar, C. Hecker, P. Arki, and Y. Joseph, “Sol-Gel Derived Hydroxyapatite Coatings for Titanium Implants: A Review,” Bioengineering, vol. 7, no. 4, Dec. 2020, Art. no. 127. DOI: https://doi.org/10.3390/bioengineering7040127

R. Family, M. Solati-Hashjin, S. Namjoy Nik, and A. Nemati, “Surface modification for titanium implants by hydroxyapatite nanocomposite,” Caspian Journal of Internal Medicine, vol. 3, no. 3, pp. 460–465, 2012.

B.-O. Taranu, A. I. Bucur, and I. Sebarchievici, “Three-step procedure for the deposition of hydroxyapatite coatings,” Journal of Coatings Technology and Research, vol. 17, no. 4, pp. 1075–1082, Jul. 2020. DOI: https://doi.org/10.1007/s11998-020-00318-3

M. H. Fathi and F. Azam, “Novel hydroxyapatite/tantalum surface coating for metallic dental implant,” Materials Letters, vol. 61, no. 4, pp. 1238–1241, Feb. 2007. DOI: https://doi.org/10.1016/j.matlet.2006.07.013

Q. Chen and G. A. Thouas, “Metallic implant biomaterials,” Materials Science and Engineering: R: Reports, vol. 87, pp. 1–57, Jan. 2015. DOI: https://doi.org/10.1016/j.mser.2014.10.001

S. S. Bhasin, E. Perwez, S. Sachdeva, and R. Mallick, “Trends in prosthetic biomaterials in implant dentistry,” Journal of the International Clinical Dental Research Organization, vol. 7, no. 3, pp. 148–159, Dec. 2015. DOI: https://doi.org/10.4103/2231-0754.172936

M. Manoj, R. Subbiah, D. Mangalaraj, N. Ponpandian, C. Viswanathan, and K. Park, “Influence of Growth Parameters on the Formation of Hydroxyapatite (HAp) Nanostructures and Their Cell Viability Studies,” Nanobiomedicine, vol. 2, Jan. 2015, Art. no. 2. DOI: https://doi.org/10.5772/60116

M. Lukaszewska-Kuska, P. Krawczyk, A. Martyla, W. Hedzelek, and B. Dorocka-Bobkowska, “Hydroxyapatite coating on titanium endosseous implants for improved osseointegration: Physical and chemical considerations,” Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, vol. 27, no. 8, pp. 1055–1059, Aug. 2018. DOI: https://doi.org/10.17219/acem/69084

H. Daugaard, B. Elmengaard, J. E. Bechtold, T. Jensen, and K. Soballe, “The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray,” Journal of Biomedical Materials Research Part A, vol. 92A, no. 3, pp. 913–921, 2010.

A. Szczes, L. Holysz, and E. Chibowski, “Synthesis of hydroxyapatite for biomedical applications,” Advances in Colloid and Interface Science, vol. 249, pp. 321–330, Nov. 2017. DOI: https://doi.org/10.1016/j.cis.2017.04.007

A. Fihri, C. Len, R. S. Varma, and A. Solhy, “Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis,” Coordination Chemistry Reviews, vol. 347, pp. 48–76, Sep. 2017. DOI: https://doi.org/10.1016/j.ccr.2017.06.009

K. Kuroda and M. Okido, “Hydroxyapatite Coating of Titanium Implants Using Hydroprocessing and Evaluation of Their Osteoconductivity,” Bioinorganic Chemistry and Applications, vol. 2012, Feb. 2012, Art. no. e730693. DOI: https://doi.org/10.1155/2012/730693

P. Habibovic, F. Barrere, C. A. V. Blitterswijk, K. de Groot, and P. Layrolle, “Biomimetic Hydroxyapatite Coating on Metal Implants,” Journal of the American Ceramic Society, vol. 85, no. 3, pp. 517–522, 2002. DOI: https://doi.org/10.1111/j.1151-2916.2002.tb00126.x

V. Rattan, T. S. Sidhu, and M. Mittal, “An Overview of Hydroxyapatite Coated Titanium Implants,” Asian Journal of Engineering and Applied Technology, vol. 1, no. 2, pp. 40–43, Jul. 2012.

G. Ciobanu and M. Harja, “Investigation on hydroxyapatite coatings formation on titanium surface,” IOP Conference Series: Materials Science and Engineering, vol. 444, Nov. 2018, Art. no. 032007. DOI: https://doi.org/10.1088/1757-899X/444/3/032007

M. Hadidi et al., “Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications,” Surface and Coatings Technology, vol. 321, pp. 171–179, Jul. 2017. DOI: https://doi.org/10.1016/j.surfcoat.2017.04.055

M. Komath, P. Rajesh, C. V. Muraleedharan, H. K. Varma, R. Reshmi, and M. K. Jayaraj, “Formation of hydroxyapatite coating on titanium at 200°C through pulsed laser deposition followed by hydrothermal treatment,” Bulletin of Materials Science, vol. 2, no. 34, pp. 389–399, 2011. DOI: https://doi.org/10.1007/s12034-011-0069-5

M. Furko, K. Balazsi, and C. Balazsi, “Comparative study on preparation and characterization of bioactive coatings for biomedical applications—A review on recent patents and literature,” Reviews on Advanced Materials Science, vol. 48, no. 1, pp. 25–51, 2017.

K. D. Patel, R. K. Singh, J.-H. Lee, and H.-W. Kim, “Electrophoretic coatings of hydroxyapatite with various nanocrystal shapes,” Materials Letters, vol. 234, pp. 148–154, Jan. 2019. DOI: https://doi.org/10.1016/j.matlet.2018.09.066

L. Sorkhi, M. Farrokhi-Rad, and T. Shahrabi, “Electrophoretic Deposition of Hydroxyapatite–Chitosan–Titania on Stainless Steel 316 L,” Surfaces, vol. 2, no. 3, pp. 458–467, Sep. 2019. DOI: https://doi.org/10.3390/surfaces2030034

M. Gardon, A. Concustell, S. Dosta, N. Cinca, I. G. Cano, and J. M. Guilemany, “Improved bonding strength of bioactive cermet Cold Gas Spray coatings,” Materials Science and Engineering: C, vol. 45, pp. 117–121, Dec. 2014. DOI: https://doi.org/10.1016/j.msec.2014.08.053

M. Rana, N. Akhtar, S. Rahman, H. Jamil, and S. Asaduzzaman, “Extraction of Hydroxyapatite from Bovine and Human Cortical Bone by Thermal Decomposition and Effect of Gamma Radiation: A Comparative Study,” International Journal of Complementary & Alternative Medicine, vol. 8, no. 3, Aug. 2017, Art. no. 263. DOI: https://doi.org/10.15406/ijcam.2017.07.00263

R. C. Rocha et al., “Surface, microstructural, and adhesion strength investigations of a bioactive hydroxyapatite-titanium oxide ceramic coating applied to Ti-6Al-4V alloys by plasma thermal spraying,” Materials Research, vol. 21, no. 4, 2018, Art. no. e20171144. DOI: https://doi.org/10.1590/1980-5373-mr-2017-1144

V. Jordanovova, M. Losertova, M. Stencek, T. Lukasova, G. Simha Martynkova, and P. Peikertova, “Microstructure and Properties of Nanostructured Coating on Ti6Al4V,” Materials, vol. 13, no. 3, Jan. 2020, Art. no. 708. DOI: https://doi.org/10.3390/ma13030708

A. K. Khanra, H. C. Jung, S. H. Yu, K. S. Hong, and K. S. Shin, “Microstructure and mechanical properties of Mg-HAP composites,” Bulletin of Materials Science, vol. 33, no. 1, pp. 43–47, Feb. 2010. DOI: https://doi.org/10.1007/s12034-010-0006-z

H. Naseri, M. Ghatee, A. Yazdani, M. Mohammadi, and S. Manafi, “Characterization of the 3YSZ/CNT/HAP coating on the Ti6Al4V alloy by electrophoretic deposition,” Journal of Biomedical Materials Research Part B: Applied Biomaterials.

P. A. F. Sossa et al., “Comparative study between natural and synthetic Hydroxyapatite: structural, morphological and bioactivity properties,” Materia (Rio de Janeiro), vol. 23, no. 4, 2018. DOI: https://doi.org/10.1590/s1517-707620180004.0551

G. C. Gomes, F. F. Borghi, R. O. Ospina, E. O. López, F. O. Borges, and A. Mello, “Nd:YAG (532nm) pulsed laser deposition produces crystalline hydroxyapatite thin coatings at room temperature,” Surface and Coatings Technology, vol. 329, pp. 174–183, Nov. 2017. DOI: https://doi.org/10.1016/j.surfcoat.2017.09.008

A. A. Abdeltawab, M. A. Shoeib, and S. G. Mohamed, “Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions,” Surface and Coatings Technology, vol. 206, no. 1, pp. 43–50, Oct. 2011. DOI: https://doi.org/10.1016/j.surfcoat.2011.06.034

H. Gheisari and E. Karamian, “Preparation and characterization of hydroxyapatite reinforced with hardystonite as a novel bio-nanocomposite for tissue engineering,” Nanomedicine Journal, vol. 2, no. 2, pp. 141–152, Apr. 2015.

L. Mohan, D. Durgalakshmi, M. Geetha, T. S. N. Sankara Narayanan, and R. Asokamani, “Electrophoretic deposition of nanocomposite (HAp+TiO2) on titanium alloy for biomedical applications,” Ceramics International, vol. 38, no. 4, pp. 3435–3443, May 2012. DOI: https://doi.org/10.1016/j.ceramint.2011.12.056


How to Cite

S. Asrar, M. Tufail, and A. D. Chandio, “Facile Coating of HAP on Ti6Al4V for Osseointegration”, Eng. Technol. Appl. Sci. Res., vol. 11, no. 3, pp. 7240–7246, Jun. 2021.


Abstract Views: 109
PDF Downloads: 81

Metrics Information
Bookmark and Share